ترغب بنشر مسار تعليمي؟ اضغط هنا

Scanning plasmonic microscopy by image reconstruction from the Fourier space

119   0   0.0 ( 0 )
 نشر من قبل Aurelien Drezet
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We demonstrate a simple scheme for high-resolution imaging of nanoplasmonic structures that basically removes most of the resolution limiting allowed light usually transmitted to the far field. This is achieved by implementing a Fourier lens in a near-field scanning optical microscope (NSOM) operating in the leakage-radiation microscopy (LRM) mode. The method consists of reconstructing optical images solely from the plasmonic `forbidden light collected in the Fourier space. It is demonstrated by using a point-like nanodiamond-based tip that illuminates a thin gold film patterned with a sub-wavelength annular slit. The reconstructed image of the slit shows a spatial resolution enhanced by a factor $simeq 4$ compared to NSOM images acquired directly in the real space.

قيم البحث

اقرأ أيضاً

A new principle of subwavelength imaging based on frequency scanning is considered. It is shown that it is possible to reconstruct the spatial profile of an external field exciting an array (or coupled arrays) of subwavelength-sized resonant particle s with a frequency scan over the whole band of resonating array modes. During the scan it is enough to measure and store the values of the near field at one or at most two points. After the scan the distribution of the near field can be reconstructed with simple post-processing. The proposed near-field microscope has no moving parts.
Aperture based scanning near field optical microscopes are important instruments to study light at the nanoscale and to understand the optical functionality of photonic nanostructures. In general, a detected image is affected by both, the transverse electric and magnetic field components of light. The discrimination of the individual field components is challenging, as these four field components are contained within two signals in the case of a polarization-resolved measurement. Here, we develop a methodology to solve the inverse imaging problem and to retrieve the vectorial field components from polarization- and phase-resolved measurements. Our methodology relies on the discussion of the image formation process in aperture based scanning near field optical microscopes. On this basis, we are also able to explain how the relative contributions of the electric and magnetic field components within detected images depend on the probe geometry, its material composition, and the illumination wavelength. This allows to design probes that are dominantly sensitive either to the electric or magnetic field components of light.
A theory is presented to describe the heat-flux radiated in near-field regime by a set of interacting nanoemitters held at different temperatures in vacuum or above a solid surface. We show that this thermal energy can be focused and even amplified i n spots that are much smaller than those obtained with a single thermal source. We also demonstrate the possibility to locally pump heat using specific geometrical configurations. These many body effects pave the way to a multi-tip near-field scanning thermal microscopy which could find broad applications in the fields of nanoscale thermal management, heat-assisted data recording, nanoscale thermal imaging, heat capacity measurements and infrared spectroscopy of nano-objects.
We develop a semi-analytical method for analyzing surface plasmon interferometry using near-field scanning optical sources. We compare our approach to Young double hole interferometry experiments using scanning tunneling microscope (STM) discussed in the literature and realize experiments with an aperture near-field scanning optical microscope (NSOM) source positioned near a ring like aperture slit milled in a thick gold film. In both cases the agreement between experiments and model is very good. We emphasize the role of dipole orientations and discuss the role of magnetic versus electric dipole contributions to the imaging process as well as the directionality of the effective dipoles associated with the various optical and plasmonic sources.
We propose to enhance the performance of localized plasmon structured illumination microscopy (LP-SIM) via intensity correlations. LP-SIM uses sub-wavelength illumination patterns to encode high spatial frequency information. It can enhance the resol ution up to three-fold before gaps in the OTF support arise. For blinking fluorophores or for quantum antibunching an intensity correlation analysis induces higher harmonics of the illumination pattern and enlarges the effective OTF. This enables ultrahigh resolutions without gaps in the OTF support, and thus a fully deterministic imaging scheme. We present simulations that include shot and external noise and demonstrate the resolution power under realistic photon budgets. The technique has potential in light microscopy where low-intensity illumination is paramount while aiming for high spatial but moderate temporal resolutions.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا