ﻻ يوجد ملخص باللغة العربية
Due to the large spin-orbital coupling in the layered 5d-transition metal chalcogenides compound, the occurrence of superconductivity in Ir2-xPdxTe2 offers a good chance to search for possible topological superconducting states in this system. We did comprehensive studies on the superconducting properties and electronic structures of single crystalline Ir0.95Pd0.05Te2 samples. The superconducting gap size, critical fields and coherence length along different directions were experimentally determined. Macroscopic bulk measurements and microscopic low temperature scanning tunneling spectroscopy results suggest that Ir0.95Pd0.05Te2 possesses a BCS-like s-wave state. No sign of zero bias conductance peak were found in the vortex core at 0.4K.
We present a comprehensive study of the low-temperature heat capacity and thermal expansion of single crystals of the hole-doped Ba1-xKxFe2As2 series (0<x<1) and the end-members RbFe2As2 and CsFe2As2. A large increase of the Sommerfeld coefficient is
We report the specific heat (SH) measurements on single crystals of hole doped $FeAs$-based superconductor $Ba_{0.6}K_{0.4}Fe_2As_2$. It is found that the electronic SH coefficient $gamma_e(T)$ is not temperature dependent and increases almost linear
The noncentrosymmetric superconductor Re$_6$Zr has attracted much interest due to the observation of broken time-reversal symmetry in the superconducting state. Here we report an investigation of the superconducting gap structure of Re$_6$Zr single c
Recently, the niobium (Nb)-doped topological insulator Bi_2Se_3, in which the finite magnetic moments of the Nb atoms are intercalated in the van der Waals gap between the Bi_2Se_3 layers, has been shown to exhibit both superconductivity with T_c = 3
We show that the {it gapped} triplet superconductivity, i.e., a triplet superconductor with triplet order parameter, can be realized in strong spin-orbit-coupled quantum wells in proximity to $s$-wave superconductor. It is revealed that with the sing