ترغب بنشر مسار تعليمي؟ اضغط هنا

The ages of stellar populations in a warm dark matter universe

120   0   0.0 ( 0 )
 نشر من قبل Francesco Calura
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

By means of a semi-analytic model of galaxy formation, we show how the local observed relation between age and galactic stellar mass is affected by assuming a DM power spectrum with a small-scale cutoff. We compare results obtained by means of both a Lambda-cold dark matter (LambdaCDM) and a Lambda-warm dark matter (LambdaWDM) power spectrum - suppressed with respect to the LambdaCDM at scales below ~ 1 Mpc. We show that, within a LWDM cosmology with a thermal relic particle mass of 0.75 keV, both the mass-weighted and the luminosity-weighted age-mass relations are steeper than those obtained within a LambdaCDM universe, in better agreement with the observed relations. Moreover, both the observed differential and cumulative age distributions are better reproduced within a LambdaWDM cosmology. In such a scenario, star formation appears globally delayed with respect to the LambdaCDM, in particular in low-mass galaxies. The difficulty of obtaining a full agreement between model results and observations is to be ascribed to our present poor understanding of baryonic physics.



قيم البحث

اقرأ أيضاً

In warm dark matter scenarios structure formation is suppressed on small scales with respect to the cold dark matter case, reducing the number of low-mass halos and the fraction of ionized gas at high redshifts and thus, delaying reionization. This h as an impact on the ionization history of the Universe and measurements of the optical depth to reionization, of the evolution of the global fraction of ionized gas and of the thermal history of the intergalactic medium, can be used to set constraints on the mass of the dark matter particle. However, the suppression of the fraction of ionized medium in these scenarios can be partly compensated by varying other parameters, as the ionization efficiency or the minimum mass for which halos can host star-forming galaxies. Here we use different data sets regarding the ionization and thermal histories of the Universe and, taking into account the degeneracies from several astrophysical parameters, we obtain a lower bound on the mass of thermal warm dark matter candidates of $m_X > 1.3$ keV, or $m_s > 5.5$ keV for the case of sterile neutrinos non-resonantly produced in the early Universe, both at 90% confidence level.
147 - Richard M. McDermid 2012
I present a brief review of the stellar population properties of massive galaxies, focusing on early-type galaxies in particular, with emphasis on recent results from the ATLAS3D Survey. I discuss the occurrence of young stellar ages, cold gas, and o ngoing star formation in early-type galaxies, the presence of which gives important clues to the evolutionary path of these galaxies. Consideration of empirical star formation histories gives a meaningful picture of galaxy stellar population properties, and allows accurate comparison of mass estimates from populations and dynamics. This has recently provided strong evidence of a non-universal IMF, as supported by other recent evidences. Spatially-resolved studies of stellar populations are also crucial to connect distinct components within galaxies to spatial structures seen in other wavelengths or parameters. Stellar populations in the faint outer envelopes of early-type galaxies are a formidable frontier for observers, but promise to put constraints on the ratio of accreted stellar mass versus that formed in situ - a key feature of recent galaxy formation models. Galaxy environment appears to play a key role in controlling the stellar population properties of low mass galaxies. Simulations remind us, however, that current day galaxies are the product of a complex assembly and environment history, which gives rise to the trends we see. This has strong implications for our interpretation of environmental trends.
160 - Gustavo Yepes 2013
We review how dark matter is distributed in our local neighbourhood from an observational and theoretical perspective. We will start by describing first the dark matter halo of our own galaxy and in the Local Group. Then we proceed to describe the da rk matter distribution in the more extended area known as the Local Universe. Depending on the nature of dark matter, numerical simulations predict different abundances of substructures in Local Group galaxies, in the number of void regions and in the abundance of low rotational velocity galaxies in the Local Universe. By comparing these predictions with the most recent observations, strong constrains on the physical properties of the dark matter particles can be derived. We devote particular attention to the results from the Constrained Local UniversE Simulations (CLUES) project, a special set of simulations whose initial conditions are constrained by observational data from the Local Universe. The resulting simulations are designed to reproduce the observed structures in the nearby universe. The CLUES provides a numerical laboratory for simulating the Local Group of galaxies and exploring the physics of galaxy formation in an environment designed to follow the observed Local Universe. It has come of age as the numerical analogue of Near-Field Cosmology.
We present an in-depth exploration of the phenomenon of dynamical friction in a universe where the dark matter is composed entirely of so-called Fuzzy Dark Matter (FDM), ultralight bosons of mass $msimmathcal{O}(10^{-22}),$eV. We review the classical treatment of dynamical friction before presenting analytic results in the case of FDM for point masses, extended mass distributions, and FDM backgrounds with finite velocity dispersion. We then test these results against a large suite of fully non-linear simulations that allow us to assess the regime of applicability of the analytic results. We apply these results to a variety of astrophysical problems of interest, including infalling satellites in a galactic dark matter background, and determine that emph{(1)}~for FDM masses $mgtrsim 10^{-21}, {rm eV}, c^{-2}$, the timing problem of the Fornax dwarf spheroidals globular clusters is no longer solved and emph{(2)}~the effects of FDM on the process of dynamical friction for satellites of total mass $M$ and relative velocity $v_{rm rel}$ should require detailed numerical simulations for $left(M/10^9~M_{odot}right) left(m/10^{-22}~{rm eV}right)left(100~{rm km}~{rm s}^{-1}/v_{rm rel}right) sim 1$, parameters which would lie outside the validated range of applicability of any currently developed analytic theory, due to transient wave structures in the time-dependent regime.
We describe the methodology to include nonlinear evolution, including tidal effects, in the computation of subhalo distribution properties in both cold (CDM) and warm (WDM) dark matter universes. Using semi-analytic modeling, we include effects from dynamical friction, tidal stripping, and tidal heating, allowing us to dynamically evolve the subhalo distribution. We calibrate our nonlinear evolution scheme to the CDM subhalo mass function in the Aquarius N-body simulation, producing a subhalo mass function within the range of simulations. We find tidal effects to be the dominant mechanism of nonlinear evolution in the subhalo population. Finally, we compute the subhalo mass function for $m_chi=1.5$ keV WDM including the effects of nonlinear evolution, and compare radial number densities and mass density profiles of subhalos in CDM and WDM models. We show that all three signatures differ between the two dark matter models, suggesting that probes of substructure may be able to differentiate between them.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا