ﻻ يوجد ملخص باللغة العربية
We review how dark matter is distributed in our local neighbourhood from an observational and theoretical perspective. We will start by describing first the dark matter halo of our own galaxy and in the Local Group. Then we proceed to describe the dark matter distribution in the more extended area known as the Local Universe. Depending on the nature of dark matter, numerical simulations predict different abundances of substructures in Local Group galaxies, in the number of void regions and in the abundance of low rotational velocity galaxies in the Local Universe. By comparing these predictions with the most recent observations, strong constrains on the physical properties of the dark matter particles can be derived. We devote particular attention to the results from the Constrained Local UniversE Simulations (CLUES) project, a special set of simulations whose initial conditions are constrained by observational data from the Local Universe. The resulting simulations are designed to reproduce the observed structures in the nearby universe. The CLUES provides a numerical laboratory for simulating the Local Group of galaxies and exploring the physics of galaxy formation in an environment designed to follow the observed Local Universe. It has come of age as the numerical analogue of Near-Field Cosmology.
Sterile neutrinos comprise an entire class of dark matter models that, depending on their production mechanism, can be hot, warm, or cold dark matter. We simulate the Local Group and representative volumes of the Universe in a variety of sterile neut
We make detailed theoretical predictions for the assembly properties of the Local Group (LG) in the standard LambdaCDM cosmological model. We use three cosmological N-body dark matter simulations from the CLUES project, which are designed to reproduc
We present an in-depth exploration of the phenomenon of dynamical friction in a universe where the dark matter is composed entirely of so-called Fuzzy Dark Matter (FDM), ultralight bosons of mass $msimmathcal{O}(10^{-22}),$eV. We review the classical
When measuring the value of the Hubble parameter, $H_0$, it is necessary to know the recession velocity free of the effects of peculiar velocities. In this work, we study different models of peculiar velocity in the local Universe. In particular, we
The cosmic electron and positron excesses have been explained as possible dark matter (DM) annihilation products. In this work we investigate the possible effects of such a DM annihilation scenario during the evolution history of the Universe. We fir