ترغب بنشر مسار تعليمي؟ اضغط هنا

SDSS J114657.79+403708.6: the third most distant blazar at z=5.0

67   0   0.0 ( 0 )
 نشر من قبل Gabriele Ghisellini
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The radio-loud quasar SDSS J114657.79+403708.6 at a redshift z=5.0 is one of the most distant radio-loud objects. The IR-optical luminosity and spectrum suggest that its black hole has a very large mass: M=(5+-1)x 1e9 Msun. The radio-loudness (ratio of the radio to optical flux) of the source is large (around 100), suggesting that the source is viewed at small angles from the jet axis, and could be a blazar. The X-ray observations fully confirm this hypothesis, due to the high level and hardness of the flux. This makes SDSS J114657.79+403708.6 the third most distant blazar known, after Q0906+693 (z=5.47) and B2 1023+25 (z=5.3). Among those, SDSS J114657.79+403708.6 has the largest black hole mass, setting interesting constraints on the mass function of heavy (larger than one billion solar masses) black holes at high redshifts.

قيم البحث

اقرأ أيضاً

We present the redshift lower limit of z>0.6035 for the very-high-energy (VHE; E>100 GeV) emitting blazar PKS 1424+240 (PG 1424+240). This limit is inferred from Lyman beta and gamma absorption observed in the far-ultraviolet spectra from the Hubble Space Telescope/Cosmic Origins Spectrograph. No VHE-detected blazar has shown solid spectroscopic evidence of being more distant. At this distance, VHE observations by VERITAS are shown to sample historically large gamma-ray opacity values at 500 GeV, extending beyond tau=4 for low-level models of the extragalactic background light (EBL) and beyond tau=5 for high-levels. The majority of the z=0.6035 absorption-corrected VHE spectrum appears to exhibit a lower flux than an extrapolation of the contemporaneous LAT power-law fit beyond 100 GeV. However, the highest energy VERITAS point is the only point showing agreement with this extrapolation, possibly implying the overestimation of the gamma-ray opacity or the onset of an unexpected VHE spectral feature. A curved log parabola is favored when fitting the full range of gamma-ray data (0.5 to 500 GeV). While fitting the absorption-corrected VHE data alone results in a harder differential power law than that from the full range, the indices derived using three EBL models are consistent with the physically motivated limit set by Fermi acceleration processes.
335 - M. Orienti 2014
We report results of a multiband monitoring campaign of the flat spectrum radio quasar TXS 0536+145 at redshift 2.69. This source was detected during a very high gamma-ray activity state in 2012 March by the Large Area Telescope on board Fermi, becom ing the gamma-ray flaring blazar at the highest redshift detected so far. At the peak of the flare the source reached an apparent isotropic gamma-ray luminosity of 6.6 x 10^49 erg/s which is comparable to the values achieved by the most luminous blazars. This activity triggered radio-to-X-rays monitoring observations by Swift, Very Long Baseline Array, European VLBI Network, and Medicina single-dish telescope. Significant variability was observed from radio to X-rays supporting the identification of the gamma-ray source with TXS 0536+145. Both the radio and gamma-ray light curves show a similar behaviour, with the gamma-rays leading the radio variability with a time lag of about 4-6 months. The luminosity increase is associated with a flattening of the radio spectrum. No new superluminal component associated with the flare was detected in high resolution parsec-scale radio images. During the flare the gamma-ray spectrum seems to deviate from a power law, showing a curvature that was not present during the average activity state. The gamma-ray properties of TXS 0536+145 are consistent with those shown by the high-redshift gamma-ray blazar population.
Blazars are a sub-class of quasars with Doppler boosted jets oriented close to the line of sight, and thus efficient probes of supermassive black hole growth and their environment, especially at high redshifts. Here we report on Very Long Baseline In terferometry observations of a blazar J0906+6930 at z = 5.47, which enabled the detection of polarised emission and measurement of jet proper motion at parsec scales. The observations suggest a less powerful jet compared with the general blazar population, including lower proper motion and bulk Lorentz factor. This coupled with a previously inferred high accretion rate indicate a transition from an accretion radiative power to a jet mechanical power based transfer of energy and momentum to the surrounding gas.While alternative scenarios could not be fully ruled out, our results indicate a possibly nascent jet embedded in and interacting with a dense medium resulting in a jet bending.
The radio-loud quasar SDSS J013127.34-032100.1at a redshift z=5.18 is one of the most distant radio-loud objects. The radio to optical flux ratio (i.e. the radio-loudness) of the source is large, making it a promising blazar candidate. Its overall sp ectral energy distribution, completed by the X-ray flux and spectral slope derived through Target of Opportunity Swift/XRT observations, is interpreted by a non-thermal jet plus an accretion disc and molecular torus model. We estimate that its black hole mass is (1.1+-0.2)1e10 Msun. for an accretion efficiency eta=0.08, scaling roughly linearly with eta. Although there is a factor ~2 of systematic uncertainty, this black hole mass is the largest found at these redshifts in a radio loud object. We derive a viewing angle between 3 and 5 degrees. This implies that there must be other (hundreds) sources with the same black hole mass of SDSS J013127.34-032100.1, but whose jets are pointing away from Earth. We discuss the problems posed by the existence of such large black hole masses at such redshifts, especially in jetted quasars. In fact, if they are associated to rapidly spinning black holes, the accretion efficiency is high, implying a slower pace of black hole growth with respect to radio-quiet quasars.
We report on X-ray measurements constraining the spectral energy distribution (SED) of the high-redshift $z=5.18$ blazar SDSS J013127.34$-$032100.1 with new XMM-Newton and NuSTAR exposures. The blazars X-ray spectrum is well fit by a power law with $ Gamma=1.9$ and $N_{rm H}=1.1times10^{21}rm cm^{-2}$, or a broken power law with $Gamma_l=0.5$, $Gamma_h=1.8$, and a break energy $E_b=0.7$ keV for an expected absorbing column density of $N_{rm H}=3.6times 10^{20}rm cm^{-2}$, supported by spectral fitting of a nearby bright source. No additional spectral break is found at higher X-ray energies (1-30 keV). We supplement the X-ray data with lower-energy radio-to-optical measurements and Fermi-LAT gamma-ray upper limits, construct broadband SEDs of the source, and model the SEDs using a synchro-Compton scenario. This modeling constrains the bulk Doppler factor of the jets to $ge$7 and $ge$6 (90%) for the low- and high-$N_{rm H}$ SEDs, respectively. The corresponding beaming implies $ge$130 (low $N_{rm H}$) or $ge$100 (high $N_{rm H}$) high-spin supermassive black holes similar to J0131 exist at similar redshifts.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا