ترغب بنشر مسار تعليمي؟ اضغط هنا

Evolving parsec-scale radio structure in the most distant blazar known

448   0   0.0 ( 0 )
 نشر من قبل Tao An
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Blazars are a sub-class of quasars with Doppler boosted jets oriented close to the line of sight, and thus efficient probes of supermassive black hole growth and their environment, especially at high redshifts. Here we report on Very Long Baseline Interferometry observations of a blazar J0906+6930 at z = 5.47, which enabled the detection of polarised emission and measurement of jet proper motion at parsec scales. The observations suggest a less powerful jet compared with the general blazar population, including lower proper motion and bulk Lorentz factor. This coupled with a previously inferred high accretion rate indicate a transition from an accretion radiative power to a jet mechanical power based transfer of energy and momentum to the surrounding gas.While alternative scenarios could not be fully ruled out, our results indicate a possibly nascent jet embedded in and interacting with a dense medium resulting in a jet bending.



قيم البحث

اقرأ أيضاً

116 - P. Kharb 2020
We report the detection of an intriguing parsec-scale radio source in the offset AGN candidate, KISSR 102. The elliptical host galaxy includes two optical nuclei at a projected separation of 1.54 kpc, N1 and N2, to the south-east and north-west, resp ectively. Phase-referenced VLBA observations at 1.5 and 4.9 GHz of this LINER galaxy, have detected double radio components (A and B) at a projected separation of 4.8 parsec at 1.5 GHz, and another partially-resolved double radio structure at 4.9 GHz coincident with the brighter radio component A. These radio detections are confined to the optical nucleus N1. The brightness temperatures of all the detected radio components are high, $gtrsim10^8$ K, consistent with them being components of a radio AGN. The 1.5-4.9 GHz spectral index is inverted ($alphasim+0.64pm0.08$) for component A and steep for component B ($alpha lesssim-1.6$). The dramatic change in the spectral indices of A and B is inconsistent with it being a typical core-jet structure from a single AGN or the mini-lobes of a compact symmetric object. To be consistent with a core-jet structure, the jet in KISSR 102 would need to be undergoing strong jet-medium interaction with dense surrounding media resulting in a drastic spectral steepening of the jet. Alternatively, the results could be consistent with the presence of a parsec-scale binary radio AGN, which is the end result of a three-body interaction involving three supermassive black holes in the centre of KISSR 102.
207 - Mikhail Lisakov 2017
We present a comprehensive 5-43 GHz VLBA study of the blazar 3C 273 initiated after an onset of a strong $gamma$-ray flare in this source. We have analyzed the kinematics of new-born components, light curves, and position of the apparent core to pinp oint the location of the $gamma$-ray emission. Estimated location of the $gamma$-ray emission zone is close to the jet apex, 2 pc to 7 pc upstream from the observed 7 mm core. This is supported by ejection of a new component. The apparent core position was found to be inversely proportional to frequency. The brightness temperature in the 7 mm core reached values up to at least $10^{13}$ K during the flare. This supports the dominance of particle energy density over that of magnetic field in the 7 mm core. Particle density increased during the radio flare at the apparent jet base, affecting synchrotron opacity. This manifested itself as an apparent core shuttle along the jet during the 7 mm flare. It is also shown that a region where optical depth decreases from $tausim1$ to $tau<<1$ spans over several parsecs along the jet. The jet bulk flow speed estimated at the level of 12c on the basis of time lags between 7 mm light curves of stationary jet features is 1.5 times higher than that derived from VLBI apparent kinematics analysis.
Radio jets can play multiple roles in the feedback loop by regulating the accretion of the gas, by enhancing gas turbulence, and by driving gas outflows. Numerical simulations are beginning to make detailed predictions about these processes. Using hi gh resolution VLBI observations we test these predictions by studying how radio jets of different power and in different phases of evolution affect the properties and kinematics of the surrounding HI gas. Consistent with predictions, we find that young (or recently restarted) radio jets have stronger impact as shown by the presence of HI outflows. The outflowing medium is clumpy {with clouds of with sizes up to a few tens of pc and mass ~10^4 m_sun) already in the region close to the nucleus ($< 100$ pc), making the jet interact strongly and shock the surrounding gas. We present a case of a low-power jet where, as suggested by the simulations, the injection of energy may produce an increase in the turbulence of the medium instead of an outflow.
245 - M. Orienti 2020
We report results on multi-epoch Very Large Array (VLA) and pc-scale Very Long Baseline Array (VLBA) observations of candidate compact symmetric objects (CSOs) from the faint sample of high frequency peakers. New VLBA observations could resolve the r adio structure in about 42 per cent of the observed sources, showing double components that may be either mini-lobes or core-jet structures. Almost all the sources monitored by the VLA show some variability on time scale of a decade, and only 1 source does not show any significant variation. In 17 sources the flux density changes randomly as it is expected in blazars, and in 4 sources the spectrum becomes flat in the last observing epoch, confirming that samples selected in the GHz regime are highly contaminated by beamed objects. In 16 objects, the pc-scale and variability properties are consistent with a young radio source in adiabatic expansion, with a steady decrease of the flux density in the optically-thin part of the spectrum, and a flux density increase in the optically-thick part. For these sources we estimate dynamical ages between a few tens to a few hundreds years. The corresponding expansion velocity is generally between 0.1c and 0.7c, similar to values found in CSOs with different approaches. The fast evolution that we observe in some CSO candidates suggests that not all the objects would become classical Fanaroff-Riley radio sources.
Massive outflows of neutral atomic hydrogen (HI) have been observed in absorption in a number of radio galaxies and are considered a signature of AGN feedback. These outflows on kpc-scales have not been investigated in great detail as they require hi gh-angular resolution observations to be spatially resolved. In some radio AGN, they are likely the result of the radio jets interacting with the interstellar medium. We have used a global VLBI array to map the HI outflow in a small sample of young and restarted radio galaxies which we previously observed with the VLA and the WSRT at lower resolution. Here, we report on our findings for 4C52.37 and 3C293 and we discuss the sample including the previously published sources 4C12.50 and 3C236. For 4C52.37, we present the first-ever HI VLBI observation which recovered the majority of the outflowing HI gas in form of clouds towards the central 100pc of the AGN. The clouds are blue-shifted by up to 600km/s with respect to the systemic velocity. 3C293 is largely resolved out in our VLBI observation, but we detect, towards the VLBI core, some outflowing HI gas blueshifted with respect to the systemic velocity by up to 300km/s. We also find indications that the HI outflow is extended. Overall, we find that the fraction of HI gas recovered by our VLBI observation varies significantly within our sample. In all cases we find evidence for a clumpy structure of both the outflowing and the quiescent gas, consistent with predictions from numerical simulations. The outflows include at least a component of relatively compact clouds (10^4-10^5Msun) often observed already at a few tens of pc (in projection) from the core. We also find indications that the HI outflow might have a diffuse component, especially in larger sources. Our results support the interpretation that we observe these AGNs at different stages in the evolution of the jet-ISM interaction.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا