ﻻ يوجد ملخص باللغة العربية
Photoluminescence spectra of YVO$_{4}$:Eu$^{3+}$ nanoparticles are presented,with and without the attachment of of organic linker molecules that are proposed for linking to biomolecules. YVO$_{4}$:Eu$^{3+}$ nanoparticles with 5% dopant concentration were synthesized by wet chemical synthesis. X-ray diffraction and transmission electron microscopy show the expected wakefieldite structure of tetragonal particles with an average size of 17 nm. Fourier-transform infrared spectroscopy determines that metal-carboxylate coordination is successful in replacing the native metal-hydroxyl bonds with three organic linkers, namely benzoic acid, 3-nitro 4-chloro-benzoic acid and 3,4-dihydroxybenzoic acid, in separate treatments. UV-excitation photoluminescence spectra show that the position and intensity of dominant $^{5}D_{0}-^{7}F_{2}$ electric-dipole transition at 619 nm is unaffected by the benzoic acid and 3-nitro 4-chloro-benzoic acid treatments. Attachment of the 3,4-dihydroxybenzoic acid produces an order-of-magnitude quenching of the photoluminescence, due to the presence of high-frequency modes in the linker. Ratios of the dominant electric- and magnetic-dipole transitions confirm infrared measurements, which indicate that the bulk crystal of the nanoparticle is unchanged by all three treatments.
The oriented attachment (OA) of nanoparticles is an important mechanism for the synthesis of the crystals of inorganic functional materials, and the formation of natural minerals. For years it has been generally acknowledged that OA is a physical pro
Results obtained from the optical absorption and photoluminescence (PL) spectroscopy experiments have shown the formation of excitons in the silver-exchanged glass samples. These findings are reported here for the first time. Further, we investigate
Quantum transduction between microwave and optical frequencies is important for connecting superconducting quantum platforms in a quantum network. Ensembles of rare-earth ions are promising candidates to achieve this conversion due to their collectiv
The results of density functional theory calculations and measurements using X-ray photoelectron spectroscopy of Co-nanoparticles dispersed on graphene/Cu are presented. It is found that for low cobalt thickness (0.02 nm - 0.06 nm) the Co forms islan
$Co$-doping of $Fe_{3}O_{4}$ magnetic nanoparticles is an effective way to tailor their magnetic properties. When considering the two extreme cases of the $Co_{x}Fe_{3-x}O_{4}$ series, i.e. the $x=0$ and $x=1$ values, one finds that the system evolve