ﻻ يوجد ملخص باللغة العربية
The recent discovery of iron ferropnictide superconductors has received intensive concerns on magnetic involved superconductors. Prominent features of ferropnictide superconductors are becoming apparent: the parent compounds exhibit antiferromagnetic (AFM) ordered spin density wave (SDW) state; the magnetic phase transition is always accompanied to a crystal structural transition; superconductivity can be induced by suppressing the SDW phase via either chemical doping or applied external pressure to the parent state. These features generated considerable interests on the interplay between magnetism and structure in chemical doped samples, showing crystal structure transitions always precedes to or coincide with magnetic transition. Pressure tuned transition on the other hand would be more straightforward to superconducting mechanism studies since there are no disorder effects caused by chemical doping; however, remarkably little is known about the interplay in the parent compounds under controlled pressure due to the experimental challenge of in situ measuring both of magnetic & crystal structure evolution at high pressure & low temperatures. Here we show from combined synchrotron Mossbauer and x-ray diffraction at high pressures that the magnetic ordering surprisingly precedes the structural transition at high pressures in the parent compound BaFe2As2, in sharp contrast to the chemical doping case. The results can be well understood in terms of the spin fluctuations in the emerging nematic phase before the long range magnetic order that sheds new light on understanding how parent compound evolves from a SDW state to a superconducting phase, a key scientific inquiry of iron based superconductors.
In addition to higher Tc compared with the ubiquitous cuprates for a material composed of a single electronically active layer, the newly discovered LnFeAsO superconductors offer additional compositional variation. In a similar fashion to the CuO2 la
We investigate the transient electronic structure of BaFe2As2, a parent compound of iron-based superconductors, by time- and angle-resolved photoemission spectroscopy. In order to probe the entire Brillouin zone, we utilize extreme ultraviolet photon
Using femtosecond time-resolved x-ray diffraction we investigate the structural dynamics of the coherently excited A1g phonon mode in the Fe-pnictide parent compound BaFe2As2. The fluence dependent intensity oscillations of two specific Bragg reflect
We elucidate the existing controversies in the newly discovered K-doped iron selenide (KxFe2-ySe2-z) superconductors. The stoichiometric KFe2Se2 with surd2timessurd2 charge ordering was identified as the parent compound of KxFe2-ySe2-z superconductor
We show that only a few percentage of Sn doping at the Ba site on BaFe$_2$As$_2$, can cause electronic topological transition, namely, the Lifshitz transition. A hole like d$_{xy}$ band of Fe undergoes electron like transition due to 4% Sn doping. Li