ترغب بنشر مسار تعليمي؟ اضغط هنا

KFe_2Se_2 is the parent compound of K-doped iron selenide superconductors

224   0   0.0 ( 0 )
 نشر من قبل Xi Chen
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We elucidate the existing controversies in the newly discovered K-doped iron selenide (KxFe2-ySe2-z) superconductors. The stoichiometric KFe2Se2 with surd2timessurd2 charge ordering was identified as the parent compound of KxFe2-ySe2-z superconductor using scanning tunneling microscopy and spectroscopy. The superconductivity is induced in KFe2Se2 by either Se vacancies or interacting with the anti-ferromagnetic K2Fe4Se5 compound. Totally four phases were found to exist in KxFe2-ySe2-z: parent compound KFe2Se2, superconducting KFe2Se2 with surd2timessurd5 charge ordering, superconducting KFe2Se2-z with Se vacancies and insulating K2Fe4Se5 with surd5timessurd5 Fe vacancy order. The phase separation takes place at the mesoscopic scale under standard molecular beam epitaxy condition.

قيم البحث

اقرأ أيضاً

78 - Wei Li , Hao Ding , Peng Deng 2011
Alkali-doped iron selenide is the latest member of high Tc superconductor family, and its peculiar characters have immediately attracted extensive attention. We prepared high-quality potassium-doped iron selenide (KxFe2-ySe2) thin films by molecular beam epitaxy and unambiguously demonstrated the existence of phase separation, which is currently under debate, in this material using scanning tunneling microscopy and spectroscopy. The stoichiometric superconducting phase KFe2Se2 contains no iron vacancies, while the insulating phase has a surd5timessurd5 vacancy order. The iron vacancies are shown always destructive to superconductivity in KFe2Se2. Our study on the subgap bound states induced by the iron vacancies further reveals a magnetically-related bipartite order in the superconducting phase. These findings not only solve the existing controversies in the atomic and electronic structures in KxFe2-ySe2, but also provide valuable information on understanding the superconductivity and its interplay with magnetism in iron-based superconductors.
Herewith, we review the available experimental data of thermoelectric transport properties of iron-based superconductors and parent compounds. We discuss possible physical mechanisms into play in determining the Seebeck effect, from whence one can ex tract information about Fermi surface reconstruction and Lifshitz transitions, multiband character, coupling of charge carriers with spin excitations and its relevance in the unconventional superconducting pairing mechanism, nematicity, quantum critical fluctuations close to the optimal doping for superconductivity, correlation. Additional information is obtained from the analysis of the Nernst effect, whose enhancement in parent compounds must be related partially to multiband transport and low Fermi level, but mainly to the presence of Dirac cone bands at the Fermi level. In the superconducting compounds, large Nernst effect in the normal state is explained in terms of fluctuating precursors of the spin density wave state, while in the superconducting state it mirrors the usual vortex liquid dissipative regime. A comparison between the phenomenology of thermoelectric behavior of different families of iron-based superconductors and parent compounds allows to evidence the key differences and analogies, thus providing clues on the rich and complex physics of these fascinating unconventional superconductors.
A review of the magnetism in the parent compounds of the iron-based superconductors is given based on the transmission Moessbauer spectroscopy of 57Fe and 151Eu. It was found that the 3d magnetism is of the itinerant character with varying admixture of the spin-polarized covalent bonds. For the 122 compounds a longitudinal spin density wave (SDW) develops. In the case of the EuFe2As2 a divalent europium orders antiferromagnetically at much lower temperature as compared to the onset of SDW. These two magnetic systems remain almost uncoupled one to another. For the non-stoichiometric Fe(1+x)Te parent of the 11 family one has a transversal SDW and magnetic order of the interstitial iron with relatively high and localized magnetic moments. These two systems are strongly coupled one to another. For the grand parent of the iron-based superconductors FeAs one observes two mutually orthogonal phase-related transversal SDW on the iron sites. There are two sets of such spin arrangements due to two crystallographic iron sites. The FeAs exhibits the highest covalency among compounds studied, but it has still a metallic character.
In iron selenide superconductors only electron-like Fermi pockets survive, challenging the $S^{pm}$ pairing based on the quasi-nesting between the electron and hole Fermi pockets (as in iron arsenides). By functional renormalization group study we sh ow that an in-phase $S$-wave pairing on the electron pockets ($S^{++}_{ee}$) is realized. The pairing mechanism involves two competing driving forces: The strong C-type spin fluctuations cause attractive pair scattering between and within electron pockets via Cooperon excitations on the virtual hole pockets, while the G-type spin fluctuations cause repulsive pair scattering. The latter effect is however weakened by the hybridization splitting of the electron pockets. The resulting $S^{++}_{ee}$-wave pairing symmetry is consistent with experiments. We further propose that the quasiparticle interference pattern in scanning tunneling microscopy and the Andreev reflection in out-of-plane contact tunneling are efficient probes of in-phase versus anti-phase $S$-wave pairing on the electron pockets.
The recent discovery of high-temperature superconductivity in single-layer iron selenide has generated significant experimental interest for optimizing the superconducting properties of iron-based superconductors through the lattice modification. For simulating the similar effect by changing the chemical composition due to S doping, we investigate the superconducting properties of high-quality single crystals of FeSe$_{1-x}$S$_{x}$ ($x$=0, 0.04, 0.09, and 0.11) using magnetization, resistivity, the London penetration depth, and low temperature specific heat measurements. We show that the introduction of S to FeSe enhances the superconducting transition temperature $T_{c}$, anisotropy, upper critical field $H_{c2}$, and critical current density $J_{c}$. The upper critical field $H_{c2}(T)$ and its anisotropy are strongly temperature dependent, indicating a multiband superconductivity in this system. Through the measurements and analysis of the London penetration depth $lambda _{ab}(T)$ and specific heat, we show clear evidence for strong coupling two-gap $s$-wave superconductivity. The temperature-dependence of $lambda _{ab}(T)$ calculated from the lower critical field and electronic specific heat can be well described by using a two-band model with $s$-wave-like gaps. We find that a $d$-wave and single-gap BCS theory under the weak-coupling approach can not describe our experiments. The change of specific heat induced by the magnetic field can be understood only in terms of multiband superconductivity.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا