ﻻ يوجد ملخص باللغة العربية
The electronic states and superconductivity in iron pnictides are studied on the basis of the 16 band $d$-$p$ model which includes both the onsite Coulomb interaction between Fe $d$ electrons and the intersite one between Fe $d$ and pnictogen $p$ electrons. The model well accounts for experimentally observed two fluctuations: the $d$-$d$ interaction-enhanced antiferromagnetic (AFM) fluctuation and the $d$-$p$ interaction-enhanced ferro-orbital (FO) fluctuation responsible for the $C_{66}$ elastic softening. The AFM fluctuation induces the repulsive pairing interaction for $bm{q}sim bm{Q}_{rm AF}$ while the FO does the attractive one for $bm{q}sim bm{0}$ resulting in the $s_{pm}$-wave superconductivity where the two fluctuations cooperatively enhance the superconducting transition temperature $T_{c}$ without any competition by virtue of the $bm{q}$-space segregation.
Cooper pairing in the iron-based high-Tc superconductors is often conjectured to involve bosonic fluctuations. Among the candidates are antiferromagnetic spin-fluctuations and d-orbital fluctuations amplified by phonons. Any such electron-boson inter
This paper has been withdrawn by the author due to some experimental mistakes. In this paper, we reported that C66, C44 and (C11-C12)/2 show remarkable softening toward the structural transition temperature TS. The data reported in this paper were ac
After providing a brief genealogy of our recently proposed model for High-Tc cuprates, we investigate the details of the microscopic mechanism that produces an attractive interaction between neighboring holes. We show that a peculiar arrangement of t
The superconducting transition temperatures of high-Tc compounds based on copper, iron, ruthenium and certain organic molecules are discovered to be dependent on bond lengths, ionic valences, and Coulomb coupling between electronic bands in adjacent,
Electrical resistivity under high pressure have been measured on nominally pure SrFe2As2 up to 14 GPa. The resistivity drop appeared with increasing pressure, and we clearly observed zero resistivity. The maximum of superconducting transition tempera