ترغب بنشر مسار تعليمي؟ اضغط هنا

Collective electronic pulsation around giant nuclei in the Thomas-Fermi model

179   0   0.0 ( 0 )
 نشر من قبل Benjamin Hendrik Martin Ludwig
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Based on the Thomas-Fermi solution for compressed electron gas around a giant nucleus, $Zapprox 10^6$, we study electric pulsations of electron number-density, pressure and electric fields, which could be caused by an external perturbations acting on the nucleus or the electrons themselves. We numerically obtain the eigen-frequencies and eigen-functions for stationary pulsation modes that fulfill the boundary-value problem established by electron-number and energy-momentum conservation, equation of state, laws of thermodynamics, and Maxwells equations, as well as physical boundary conditions. We choose a proton number of $Z=10^6$ and assume the nucleons in $beta$-equilibrium at nuclear density. Similar systems with non-spherical geometry are hypothesized to exist in the lower crust of neutron stars, commonly referred to as textit{pasta equation of state}. The lowest modes turn out to be heavily influenced by the relativistic plasma frequency induced by the positive charge background in the nucleus. We discuss the possibility to apply our results to dynamic nuclei using the spectral method and mention mechanisms that could stimulate such dynamics in the astrophysical context.

قيم البحث

اقرأ أيضاً

96 - H. Ludwig , R. Ruffini , 2014
We derive and solve by the spectral method the equations for a neutral system of ultra-relativistic electrons that are compressed to the radius of the nucleus and subject to a driving force. This driving force can be thought of as originating from a nuclear breathing mode, a possibility we discuss in detail.
131 - B. P. van Zyl , E. Zaremba 1998
We have studied the collective plasma excitations of a two-dimensional electron gas with an arbitrary lateral charge-density modulation. The dynamics is formulated using a previously developed hydrodynamic theory based on the Thomas-Fermi-Dirac-von W eizsacker approximation. In this approach, both the equilibrium and dynamical properties of the periodically modulated electron gas are treated in a consistent fashion. We pay particular attention to the evolution of the collective excitations as the system undergoes the transition from the ideal two-dimensional limit to the highly-localized one-dimensional limit. We also calculate the power absorption in the long-wavelength limit to illustrate the effect of the modulation on the modes probed by far-infrared (FIR) transmission spectroscopy.
We predict the emergence of novel collective electronic excitations in warm dense matter with an inhomogeneous electronic structure based on first-principles calculations. The emerging modes are controlled by the imposed perturbation amplitude. They include satellite signals around the standard plasmon feature, transformation of plasmons to optical modes, and double-plasmon modes. Most importantly, these modes exhibit a pronounced dependence on the temperature. This makes them potentially invaluable for the diagnostics of plasma parameters in the warm dense matter regime. We demonstrate that these modes can be probed with present experimental techniques.
Bright sources of high energy electromagnetic radiation are widely employed in fundamental research as well as in industry and medicine. This steadily growing interest motivated the construction of several facilities aiming at the realisation of sour ces of intense X- and gamma-ray pulses. To date, free electron lasers and synchrotrons provide intense sources of photons with energies up to 10-100 keV. Facilities under construction based on incoherent Compton back scattering of an optical laser pulse off an electron beam are expected to yield photon beams with energy up to 19.5 MeV and peak brilliance in the range 10$^{20}$-10$^{23}$ photons s$^{-1}$ mrad$^{-2}$ mm$^{-2}$ per 0.1% bandwidth. Here, we demonstrate a novel mechanism based on the strongly amplified synchrotron emission which occurs when a sufficiently dense electron beam interacts with a millimetre thickness solid target. For electron beam densities exceeding approximately $3times10^{19}text{ cm$^{-3}$}$ filamentation instability occurs with the self-generation of 10$^{7}$-10$^{8}$ gauss magnetic fields where the electrons of the beam are trapped. This results into a giant amplification of synchrotron emission with the production of collimated gamma-ray pulses with peak brilliance above $10^{25}$ photons s$^{-1}$ mrad$^{-2}$ mm$^{-2}$ per 0.1% bandwidth and photon energies ranging from 200 keV up to several hundreds MeV. These findings pave the way to compact, high-repetition-rate (kHz) sources of short (30 fs), collimated (mrad) and high flux ($>10^{12}$ photons/s) gamma-ray pulses.
We present a general method for obtaining the exact static solutions and collective excitation frequencies of a trapped Bose-Einstein condensate (BEC) with dipolar atomic interactions in the Thomas-Fermi regime. The method incorporates analytic expre ssions for the dipolar potential of an arbitrary polynomial density profile, thereby reducing the problem of handling non-local dipolar interactions to the solution of algebraic equations. We comprehensively map out the static solutions and excitation modes, including non-cylindrically symmetric traps, and also the case of negative scattering length where dipolar interactions stabilize an otherwise unstable condensate. The dynamical stability of the excitation modes gives insight into the onset of collapse of a dipolar BEC. We find that global collapse is consistently mediated by an anisotropic quadrupolar collective mode, although there are two trapping regimes in which the BEC is stable against quadrupole fluctuations even as the ratio of the dipolar to s-wave interactions becomes infinite. Motivated by the possibility of fragmented BEC in a dipolar Bose gas due to the partially attractive interactions, we pay special attention to the scissors modes, which can provide a signature of superfluidity, and identify a long-range restoring force which is peculiar to dipolar systems. As part of the supporting material for this paper we provide the computer program used to make the calculations, including a graphical user interface.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا