ترغب بنشر مسار تعليمي؟ اضغط هنا

Directional correlations in quantum walks with two particles

81   0   0.0 ( 0 )
 نشر من قبل Martin Stefanak
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Quantum walks on the line with a single particle possess a classical analog. Involving more walkers opens up the possibility to study collective quantum effects, such as many particle correlations. In this context, entangled initial states and indistinguishability of the particles play a role. We consider directional correlations between two particles performing a quantum walk on a line. For non-interacting particles we find analytic asymptotic expressions and give the limits of directional correlations. We show that introducing $delta$-interaction between the particles, one can exceed the limits for non-interacting particles.

قيم البحث

اقرأ أيضاً

We investigate continuous-time quantum walks of two indistinguishable particles (bosons, fermions or hard-core bosons) in one-dimensional lattices with nearest-neighbour interactions. The two interacting particles can undergo independent- and/or co-w alking dependent on both quantum statistics and interaction strength. We find that two strongly interacting particles may form a bound state and then co-walk like a single composite particle with statistics-dependent propagation speed. Such an effective single-particle picture of co-walking is analytically derived in the context of degenerate perturbation and the analytical results are well consistent with direct numerical simulation. In addition to implementing universal quantum computation and observing bound states, two-particle quantum walks offer a novel route to detecting quantum statistics. Our theoretical results can be examined in experiments of light propagations in two-dimensional waveguide arrays or spin-impurity dynamics of ultracold atoms in one-dimensional optical lattices.
We demonstrate a previously unknown two-photon effect in a discrete-time quantum walk. Two identical bosons with no mutual interactions nonetheless can remain clustered together as they walk on a lattice of directionally-reversible optical four-ports acting as Grover coins; both photons move in the same direction at each step due to a two-photon quantum interference phenomenon reminiscent of the Hong-Ou-Mandel effect. The clustered two-photon amplitude splits into two localized parts, one oscillating near the initial point, and the other moving ballistically without spatial spread, in soliton-like fashion. But the two photons are always clustered in the same part of the superposition, leading to potential applications for transport of entanglement and opportunities for novel two-photon interferometry experiments.
A quantum walk places a traverser into a superposition of both graph location and traversal spin. The walk is defined by an initial condition, an evolution determined by a unitary coin/shift-operator, and a measurement based on the sampling of the pr obability distribution generated from the quantum wavefunction. Simple quantum walks are studied analytically, but for large graph structures with complex topologies, numerical solutions are typically required. For the quantum theorist, the Gremlin graph traversal machine and language can be used for the numerical analysis of quantum walks on such structures. Additionally, for the graph theorist, the adoption of quantum walk principles can transform what are currently side-effect laden traversals into pure, stateless functional flows. This is true even when the constraints of quantum mechanics are not fully respected (e.g. reversible and unitary evolution). In sum, Gremlin allows both types of theorist to leverage each others constructs for the advancement of their respective disciplines.
One-parameter family of discrete-time quantum-walk models on the square lattice, which includes the Grover-walk model as a special case, is analytically studied. Convergence in the long-time limit $t to infty$ of all joint moments of two components o f walkers pseudovelocity, $X_t/t$ and $Y_t/t$, is proved and the probability density of limit distribution is derived. Dependence of the two-dimensional limit density function on the parameter of quantum coin and initial four-component qudit of quantum walker is determined. Symmetry of limit distribution on a plane and localization around the origin are completely controlled. Comparison with numerical results of direct computer-simulations is also shown.
Quantum key distribution is one of the most fundamental cryptographic protocols. Quantum walks are important primitives for computing. In this paper we take advantage of the properties of quantum walks to design new secure quantum key distribution sc hemes. In particular, we introduce a secure quantum key-distribution protocol equipped with verification procedures against full man-in-the-middle attacks. Furthermore, we present a one-way protocol and prove its security. Finally, we propose a semi-quantum variation and prove its robustness against eavesdropping.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا