ترغب بنشر مسار تعليمي؟ اضغط هنا

Chemo-Archaeological Downsizing in a Hierarchical Universe: Impact of a Top Heavy IGIMF

37   0   0.0 ( 0 )
 نشر من قبل Ignacio Gargiulo
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We make use of a semi-analytical model of galaxy formation to investigate the origin of the observed correlation between [a/Fe] abundance ratios and stellar mass in elliptical galaxies. We implement a new galaxy-wide stellar initial mass function (Top Heavy Integrated Galaxy Initial Mass Function, TH-IGIMF) in the semi-analytic model SAG and evaluate its impact on the chemical evolution of galaxies. The SFR-dependence of the slope of the TH-IGIMF is found to be key to reproducing the correct [a/Fe]-stellar mass relation. Massive galaxies reach higher [a/Fe] abundance ratios because they are characterized by more top-heavy IMFs as a result of their higher SFR. As a consequence of our analysis, the value of the minimum embedded star cluster mass and of the slope of the embedded cluster mass function, which are free parameters involved in the TH-IGIMF theory, are found to be as low as 5 solar masses and 2, respectively. A mild downsizing trend is present for galaxies generated assuming either a universal IMF or a variable TH-IGIMF. We find that, regardless of galaxy mass, older galaxies (with formation redshifts > 2) are formed in shorter time-scales (< 2 Gyr), thus achieving larger [a/Fe] values. Hence, the time-scale of galaxy formation alone cannot explain the slope of the [a/Fe]-galaxy mass relation, but is responsible for the big dispersion of [a/Fe] abundance ratios at fixed stellar mass.We further test the hyphothesis of a TH-IGIMF in elliptical galaxies by looking into mass-to-light ratios, and luminosity functions. Models with a TH-IGIMF are also favoured by these constraints. In particular, mass-to-light ratios agree with observed values for massive galaxies while being overpredicted for less massive ones; this overprediction is present regardless of the IMF considered.

قيم البحث

اقرأ أيضاً

Galaxy surveys targeting emission lines are characterising the evolution of star-forming galaxies, but there is still little theoretical progress in modelling their physical properties. We predict nebular emission from star-forming galaxies within a cosmological galaxy formation model. Emission lines are computed by combining the semi-analytical model sag with the photoionisation code mapp. We characterise the interstellar medium (ISM) of galaxies by relating the ionisation parameter of gas in galaxies to their cold gas metallicity, obtaining a reasonable agreement with the observed ha, oii, oiii luminosity functions, and the the BPT diagram for local star-forming galaxies. The average ionisation parameter is found to increase towards low star-formation rates and high redshifts, consistent with recent observational results. The predicted link between different emission lines and their associated star-formation rates is studied by presenting scaling relations to relate them. Our model predicts that emission line galaxies have modest clustering bias, and thus reside in dark matter haloes of masses below $M_{rm halo} lesssim 10^{12} {[rm h^{-1} M_{odot}]}$. Finally, we exploit our modelling technique to predict galaxy number counts up to $zsim 10$ by targeting far-infrared (FIR) emission lines detectable with submillimetre facilities
42 - T. Treu 2005
We analyze the evolution of the Fundamental Plane for 141 field spheroidal galaxies in the redshift range 0.2<z<1.2, selected morphologically to a magnitude limit F850LP=22.43 in the northern field of the Great Observatories Origin Survey. For massiv e galaxies we find that the bulk of the star formation was completed prior to z=2. However, for the lower mass galaxies, the luminosity-weighted ages are significantly younger. The differential change in mass-to-light ratio correlates closely with rest-frame color, consistent with recent star formation and associated growth. Our data are consistent with mass rather than environment governing the overall growth, contrary to the expectations of hierarchical assembly. We discuss how feedback, conduction, and galaxy interactions may explain the downsizing trends seen within our large sample.
We present basic predictions of an updated version of the Munich semi-analytic hierarchical galaxy formation model that grows bulges via mergers and disk instabilities. Overall, we find that while spheroids below Ms ~ 10^11 Msun grow their sizes via a mixture of disk instability and mergers, galaxies above it mainly evolve via mergers. Including gas dissipation in major mergers, efficiently shrinks galaxies, especially those with final mass Ms < 10^11 Msun that are the most gas-rich, improving the match with different observables. We find that the predicted scatter in sizes at fixed stellar mass is still larger than the observed one by up to <40%. Spheroids are, on average, more compact at higher redshifts at fixed stellar mass, and at fixed redshift and stellar mass larger galaxies tend to be more starforming. More specifically, while for bulge-dominated galaxies the model envisages a nearly mass-independent decrease in sizes, the predicted size evolution for intermediate-mass galaxies is more complex. The z=2 progenitors of massive galaxies with mass around Ms and B/T>0.7 at z=0, are found to be mostly disc-dominated galaxies with a median B/T ~ 0.3, with only ~20% remaining bulge-dominated. The model also predicts that central spheroids living in more massive haloes tend to have larger sizes at fixed stellar mass. Including host halo mass dependence in computing velocity dispersions, allows the model to properly reproduce the correlations with stellar mass. We also discuss the fundamental plane, the correlations with galaxy age, the structural properties of pseudobulges, and the correlations with central black holes.
Hierarchical models predict that massive early-type galaxies (mETGs) are the latest systems to be in place into the cosmic scenario (at z<~0.5), conflicting with the observational phenomenon of galaxy mass downsizing, which poses that the most massiv e galaxies have been in place earlier that their lower-mass counterparts (since z~0.7). We have developed a semi-analytical model to test the feasibility of the major-merger origin hypothesis for mETGs, just accounting for the effects on galaxy evolution of the major mergers strictly reported by observations. The most striking model prediction is that very few present-day mETGs have been really in place since z~1, because ~90% of the mETGs existing at z~1 are going to be involved in a major merger between z~1 and the present. Accounting for this, the model derives an assembly redshift for mETGs in good agreement with hierarchical expectations, reproducing observational mass downsizing trends at the same time.
We present an in-depth exploration of the phenomenon of dynamical friction in a universe where the dark matter is composed entirely of so-called Fuzzy Dark Matter (FDM), ultralight bosons of mass $msimmathcal{O}(10^{-22}),$eV. We review the classical treatment of dynamical friction before presenting analytic results in the case of FDM for point masses, extended mass distributions, and FDM backgrounds with finite velocity dispersion. We then test these results against a large suite of fully non-linear simulations that allow us to assess the regime of applicability of the analytic results. We apply these results to a variety of astrophysical problems of interest, including infalling satellites in a galactic dark matter background, and determine that emph{(1)}~for FDM masses $mgtrsim 10^{-21}, {rm eV}, c^{-2}$, the timing problem of the Fornax dwarf spheroidals globular clusters is no longer solved and emph{(2)}~the effects of FDM on the process of dynamical friction for satellites of total mass $M$ and relative velocity $v_{rm rel}$ should require detailed numerical simulations for $left(M/10^9~M_{odot}right) left(m/10^{-22}~{rm eV}right)left(100~{rm km}~{rm s}^{-1}/v_{rm rel}right) sim 1$, parameters which would lie outside the validated range of applicability of any currently developed analytic theory, due to transient wave structures in the time-dependent regime.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا