ﻻ يوجد ملخص باللغة العربية
We study the flavor structure in intersecting D-brane models. We study anomalies of the discrete flavor symmetries. We analyze the Majorana neutrino masses, which can be generated by D-brane instanton effects. It is found that a certain pattern of mass matrix is obtained and the cyclic permutation symmetry remains unbroken. As a result, trimaximal mixing matrix can be realized if Dirac neutrino mass and charged lepton mass matrices are diagonal.
Intersecting D-brane models and their T-dual magnetic compactifications yield attractive models of particle physics where magnetic flux plays a twofold role, being the source of fermion chirality as well as supersymmetry breaking. A potential problem
The minimal embedding of the Standard Model in type I string theory is described. The SU(3) color and SU(2) weak interactions arise from two different collections of branes. The correct prediction of the weak angle is obtained for a string scale of 6
We study modular transformation of holomorphic Yukawa couplings in magnetized D-brane models. It is found that their products are modular forms, which are non-trivial representations of finite modular subgroups, e.g. $S_3$, $S_4$, $Delta(96)$ and $Delta(384)$.
We analyze proton decay via dimension six operators in certain GUT-like models derived from Type IIA orientifolds with $D6$-branes. The amplitude is parametrically enhanced by a factor of $alpha_{GUT}^{-1/3}$ relative to the coresponding result in fo
We discuss what kinds of combinations of Yukawa interactions can generate the Majorana neutrino mass matrix. We concentrate on the flavor structure of the neutrino mass matrix because it does not depend on details of the models except for Yukawa inte