ترغب بنشر مسار تعليمي؟ اضغط هنا

D-brane Standard Model

106   0   0.0 ( 0 )
 نشر من قبل Elias Kiritsis
 تاريخ النشر 2001
  مجال البحث
والبحث باللغة English
 تأليف I. Antoniadis




اسأل ChatGPT حول البحث

The minimal embedding of the Standard Model in type I string theory is described. The SU(3) color and SU(2) weak interactions arise from two different collections of branes. The correct prediction of the weak angle is obtained for a string scale of 6-8 TeV. Two Higgs doublets are necessary and proton stability is guaranteed. It predicts two massive vector bosons with masses at the TeV scale, as well as a new superweak interaction.



قيم البحث

اقرأ أيضاً

We systematically search intersecting D-brane models, which just realize the Standard Model chiral matter contents and gauge symmetry. We construct new classes of non-supersymmetric Standard Model-like models. We also study gauge coupling constants o f these models. The tree level gauge coupling is a function of compactification moduli, string scale, string coupling and winding number of D-branes. By tuning them, we examine whether the models can explain the experimental values of gauge couplings. As a result, we find that the string scale should be greater than $10^{14-15}$GeV if the compactification scale and the string scale are the same order.
143 - P. Di Vecchia 2008
In this talk we will describe the problems that one encounters when one tries to connect string theory with particle phenomenology. Then, in order to have chiral matter describing quarks and leptons, we introduce the magnetized D branes. Finally, as an explicit example of a string extension of the Standard Model, we will describe the one constructed by Ibanez, Marchesano and Rabadan.
180 - G. K. Leontaris 2007
Effective low energy models arising in the context of D-brane configurations with Standard Model (SM) gauge symmetry extended by several gauged abelian factors are discussed. The models are classified according to their hypercharge embeddings consist ent with the SM spectrum hypercharge assignment. Particular cases are analyzed according to their perspectives and viability as low energy effective field theory candidates. The resulting string scale is determined by means of a two-loop renormalization group calculation. Their implications in Yukawa couplings, neutrinos and flavor changing processes are also presented.
In this paper, the issues of the quark mass hierarchies and the Cabbibo Kobayashi Maskawa mixing are analyzed in a class of intersecting D-brane configurations with Standard Model gauge symmetry. The relevant mass matrices are constructed taking into account the constraints imposed by extra abelian symmetries and anomaly cancelation conditions. Possible mass generating mechanisms including perturbative as well as non-perturbative effects are discussed and specific patterns of mass textures are found characterized by the hierarchies of the scales where the various sources contribute. It is argued that the Cholesky decomposition of the mass matrices is the most appropriate way to determine the properties of these fermion mass patterns, while the associated triangular mass matrix form provides a unified description of all phenomenologically equivalent symmetric and non-symmetric mass matrices. An elegant analytic formula is derived for the Cholesky triangular form of the mass matrices where the entries are given as simple functions of the mass eigenstates and the diagonalizing transformation entries. Finally, motivated by the possibility of vanishing zero Yukawa mass entries in several D-brane and F-theory constructions due to the geometry of the internal space, we analyse in detail all possible texture-zeroes mass matrices within the proposed new context. These new texture-zeroes are compared to those existing in the literature while D-brane inspired cases are worked out in detail.
In the present work we perform a phenomenological analysis of the effective low energy models with Pati-Salam (PS) gauge symmetry derived in the context of D-branes. A main issue in these models arises from the fact that the right-handed fermions and the PS-symmetry breaking Higgs field transform identically under the PS symmetry, causing unnatural matter-Higgs mixing effects. We argue that this problem could be solved in particular D-brane setups where these fields arise in different intersections. We further observe that whenever a large Higgs mass term is generated in a particular class of mass spectra, a splitting mechanism -reminiscent of the doublet triplet splitting- may protect the neutral Higgs components from a heavy mass term. We analyze the implications of each individual representation which in principle is available in these models in order to specify the minimal spectrum required to build up a consistent PS model which reconciles the low energy data. A short discussion is devoted on the effects of stringy instanton corrections, particularly those generating missing Yukawa couplings and contributing to the fermion mass textures. We discuss the correlations of the intersecting D-brane spectra with those obtained from Gepner constructions and analyze the superpotential, the resulting mass textures and the low energy implications of some examples of the latter along the lines proposed above.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا