ترغب بنشر مسار تعليمي؟ اضغط هنا

A Hybrid Loss for Multiclass and Structured Prediction

128   0   0.0 ( 0 )
 نشر من قبل Zhenhua Wang
 تاريخ النشر 2014
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

We propose a novel hybrid loss for multiclass and structured prediction problems that is a convex combination of a log loss for Conditional Random Fields (CRFs) and a multiclass hinge loss for Support Vector Machines (SVMs). We provide a sufficient condition for when the hybrid loss is Fisher consistent for classification. This condition depends on a measure of dominance between labels--specifically, the gap between the probabilities of the best label and the second best label. We also prove Fisher consistency is necessary for parametric consistency when learning models such as CRFs. We demonstrate empirically that the hybrid loss typically performs least as well as--and often better than--both of its constituent losses on a variety of tasks, such as human action recognition. In doing so we also provide an empirical comparison of the efficacy of probabilistic and margin based approaches to multiclass and structured prediction.



قيم البحث

اقرأ أيضاً

In this work we provide a theoretical framework for structured prediction that generalizes the existing theory of surrogate methods for binary and multiclass classification based on estimating conditional probabilities with smooth convex surrogates ( e.g. logistic regression). The theory relies on a natural characterization of structural properties of the task loss and allows to derive statistical guarantees for many widely used methods in the context of multilabeling, ranking, ordinal regression and graph matching. In particular, we characterize the smooth convex surrogates compatible with a given task loss in terms of a suitable Bregman divergence composed with a link function. This allows to derive tight bounds for the calibration function and to obtain novel results on existing surrogate frameworks for structured prediction such as conditional random fields and quadratic surrogates.
Many practical machine learning tasks can be framed as Structured prediction problems, where several output variables are predicted and considered interdependent. Recent theoretical advances in structured prediction have focused on obtaining fast rat es convergence guarantees, especially in the Implicit Loss Embedding (ILE) framework. PAC-Bayes has gained interest recently for its capacity of producing tight risk bounds for predictor distributions. This work proposes a novel PAC-Bayes perspective on the ILE Structured prediction framework. We present two generalization bounds, on the risk and excess risk, which yield insights into the behavior of ILE predictors. Two learning algorithms are derived from these bounds. The algorithms are implemented and their behavior analyzed, with source code available at url{https://github.com/theophilec/PAC-Bayes-ILE-Structured-Prediction}.
Graphs have become increasingly popular in modeling structures and interactions in a wide variety of problems during the last decade. Graph-based clustering and semi-supervised classification techniques have shown impressive performance. This paper p roposes a graph learning framework to preserve both the local and global structure of data. Specifically, our method uses the self-expressiveness of samples to capture the global structure and adaptive neighbor approach to respect the local structure. Furthermore, most existing graph-based methods conduct clustering and semi-supervised classification on the graph learned from the original data matrix, which doesnt have explicit cluster structure, thus they might not achieve the optimal performance. By considering rank constraint, the achieved graph will have exactly $c$ connected components if there are $c$ clusters or classes. As a byproduct of this, graph learning and label inference are jointly and iteratively implemented in a principled way. Theoretically, we show that our model is equivalent to a combination of kernel k-means and k-means methods under certain condition. Extensive experiments on clustering and semi-supervised classification demonstrate that the proposed method outperforms other state-of-the-art methods.
142 - Sheng Lin , Wei Jiang , Wei Wang 2021
Compressing Deep Neural Network (DNN) models to alleviate the storage and computation requirements is essential for practical applications, especially for resource limited devices. Although capable of reducing a reasonable amount of model parameters, previous unstructured or structured weight pruning methods can hardly truly accelerate inference, either due to the poor hardware compatibility of the unstructured sparsity or due to the low sparse rate of the structurally pruned network. Aiming at reducing both storage and computation, as well as preserving the original task performance, we propose a generalized weight unification framework at a hardware compatible micro-structured level to achieve high amount of compression and acceleration. Weight coefficients of a selected micro-structured block are unified to reduce the storage and computation of the block without changing the neuron connections, which turns to a micro-structured pruning special case when all unified coefficients are set to zero, where neuron connections (hence storage and computation) are completely removed. In addition, we developed an effective training framework based on the alternating direction method of multipliers (ADMM), which converts our complex constrained optimization into separately solvable subproblems. Through iteratively optimizing the subproblems, the desired micro-structure can be ensured with high compression ratio and low performance degradation. We extensively evaluated our method using a variety of benchmark models and datasets for different applications. Experimental results demonstrate state-of-the-art performance.
This manuscripts contains the proofs for A Primal-Dual Message-Passing Algorithm for Approximated Large Scale Structured Prediction.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا