ترغب بنشر مسار تعليمي؟ اضغط هنا

A route to thermalization in the $alpha$-Fermi-Pasta-Ulam system

245   0   0.0 ( 0 )
 نشر من قبل Yuri Lvov
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We study the original $alpha$-Fermi-Pasta-Ulam (FPU) system with $N=16,32$ and $64$ masses connected by a nonlinear quadratic spring. Our approach is based on resonant wave-wave interaction theory, i.e. we assume that, in the weakly nonlinear regime (the one in which Fermi was originally interested), the large time dynamics is ruled by exact resonances. After a detailed analysis of the $alpha$-FPU equation of motion, we find that the first non trivial resonances correspond to six-wave interactions. Those are precisely the interactions responsible for the thermalization of the energy in the spectrum. We predict that for small amplitude random waves the time scale of such interactions is extremely large and it is of the order of $1/epsilon^8$, where $epsilon$ is the small parameter in the system. The wave-wave interaction theory is not based on any threshold: equipartition is predicted for arbitrary small nonlinearity. Our results are supported by extensive numerical simulations. A key role in our finding is played by the {it Umklapp} (flip over) resonant interactions, typical of discrete systems. The thermodynamic limit is also briefly discussed.



قيم البحث

اقرأ أيضاً

In systems of N coupled anharmonic oscillators, exact resonant interactions play an important role in the energy exchange between normal modes. In the weakly nonlinear regime, those interactions may facilitate energy equipartition in Fourier space. W e consider analytically resonant wave-wave interactions for the celebrated Fermi-Pasta-Ulam-Tsingou (FPUT) system. Using a number-theoretical approach based on cyclotomic polynomials, we show that the problem of finding exact resonances for a system of N particles is equivalent to a Diophantine equation whose solutions depend sensitively on the set of divisors of N. We provide an algorithm to construct all possible resonances, based on two methods: pairing-off and cyclotomic, which we introduce to build up explicit solutions to the 4-, 5- and 6-wave resonant conditions. Our results shed some light in the understanding of the long-standing FPUT paradox, regarding the sensitivity of the resonant manifolds with respect to the number of particles N and the corresponding time scale of the interactions leading to thermalisation. In this light we demonstrate that 6-wave resonances always exist for any N, while 5-wave resonances exist if N is divisible by 3 and N > 6. It is known (for finite N) that 4-wave resonances do not mix energy across the spectrum, so we investigate whether 5-wave resonances can produce energy mixing across a significant region of the Fourier spectrum by analysing the interconnected network of Fourier modes that can interact nonlinearly via resonances. The answer depends on the set of odd divisors of N that are not divisible by 3: the size of this set determines the number of dynamically independent components, corresponding to independent constants of motion (energies). We show that 6-wave resonances connect all these independent components, providing in principle a restoring mechanism for full-scale thermalisation.
The dispersive interacting waves in Fermi-Pasta-Ulam (FPU) chains of particles in textit{thermal equilibrium} are studied from both statistical and wave resonance perspectives. It is shown that, even in a strongly nonlinear regime, the chain in therm al equilibrium can be effectively described by a system of weakly interacting textit{renormalized} nonlinear waves that possess (i) the Rayleigh-Jeans distribution and (ii) zero correlations between waves, just as noninteracting free waves would. This renormalization is achieved through a set of canonical transformations. The renormalized linear dispersion of these renormalized waves is obtained and shown to be in excellent agreement with numerical experiments. Moreover, a dynamical interpretation of the renormalization of the dispersion relation is provided via a self-consistency, mean-field argument. It turns out that this renormalization arises mainly from the trivial resonant wave interactions, i.e., interactions with no momentum exchange. Furthermore, using a multiple time-scale, statistical averaging method, we show that the interactions of near-resonant waves give rise to the broadening of the resonance peaks in the frequency spectrum of renormalized modes. The theoretical prediction for the resonance width for the thermalized $beta$-FPU chain is found to be in very good agreement with its numerically measured value.
We consider the long-term weakly nonlinear evolution governed by the two-dimensional nonlinear Schr{o}dinger (NLS) equation with an isotropic harmonic oscillator potential. The dynamics in this regime is dominated by resonant interactions between qua rtets of linear normal modes, accurately captured by the corresponding resonant Hamiltonian system. In the framework of this system, we identify Fermi-Pasta-Ulam-like recurrence phenomena, whereby the normal-mode spectrum passes in close proximity of the initial configuration, and two-mode states with time-independent mode amplitude spectra that translate into long-lived breathers of the original NLS equation. We comment on possible implications of these findings for nonlinear optics and matter-wave dynamics in Bose-Einstein condensates.
119 - M. Leo , R.A. Leo , P. Tempesta 2010
We consider a $pi$-mode solution of the Fermi-Pasta-Ulam $beta$ system. By perturbing it, we study the system as a function of the energy density from a regime where the solution is stable to a regime, where is unstable, first weakly and then strongl y chaotic. We introduce, as indicator of stochasticity, the ratio $rho$ (when is defined) between the second and the first moment of a given probability distribution. We will show numerically that the transition between weak and strong chaos can be interpreted as the symmetry breaking of a set of suitable dynamical variables. Moreover, we show that in the region of weak chaos there is numerical evidence that the thermostatistic is governed by the Tsallis distribution.
The effect of discrete breathers (DBs) on macroscopic properties of the Fermi-Pasta-Ulam chain with symmetric and asymmetric potentials is investigated. The total to kinetic energy ratio (related to specific heat), stress (related to thermal expansio n), and Youngs modulus are monitored during the development of modulational instability of the zone boundary mode. The instability results in the formation of chaotic DBs followed by the transition to thermal equilibrium when DBs disappear due to energy radiation in the form of small-amplitude phonons. It is found that DBs reduce the specific heat for all the considered chain parameters. They increase the thermal expansion when the potential is asymmetric and, as expected, thermal expansion is not observed in the case of symmetric potential. The Youngs modulus in the presence of DBs is smaller than in thermal equilibrium for the symmetric potential and for the potential with a small asymmetry, but it is larger than in thermal equilibrium for the potential with greater asymmetry. Our results can be useful for setting experiments on the identification of DBs in crystals by measuring their macroscopic properties.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا