ﻻ يوجد ملخص باللغة العربية
We study the Sunyaev-Zeldovich effect for clusters of galaxies. The Boltzmann equations for the cosmic microwave background photon distribution function are studied in three Lorentz frames. We extend the previous work and derive analytic expressions for the integrated photon redistribution functions over the photon frequency. We also derive analytic expressions in the power series expansion approximation. By combining two formulas, we offer a simple and accurate tool to analyse observation data. These formulas are applicable to the non-thermal electron distributions as well as the standard thermal distribution. The Boltzmann equation is reduced to a single integral form of the electron velocity.
We study the Sunyaev-Zeldovich effect for clusters of galaxies. The Boltzmann equations for the CMB photon distribution function are studied in three Lorentz frames. We clarify the relations of the SZ effects among the different Lorentz frames. We de
Starting from a covariant formalism of the Sunyaev-Zeldovich effect for the thermal and non-thermal distributions, we derive the frequency redistribution function identical to Wrights method assuming the smallness of the photon energy (in the Thomson
We study a covariant formalism for the Sunyaev-Zeldovich effects developed in the previous papers by the present authors, and derive analytic expressions for the redistribution functions in the Thomson approximation. We also explore another covariant
Based upon the rate equations for the photon distribution function obtained in the previous paper, we study the formal solutions in three different representation forms for the Sunyaev-Zeldovich effect. By expanding the formal solution in the operato
Studying galaxy clusters through their Sunyaev-Zeldovich (SZ) imprint on the Cosmic Microwave Background has many important advantages. The total SZ signal is an accurate and precise tracer of the total pressure in the intra-cluster medium and of clu