ﻻ يوجد ملخص باللغة العربية
We study a covariant formalism for the Sunyaev-Zeldovich effects developed in the previous papers by the present authors, and derive analytic expressions for the redistribution functions in the Thomson approximation. We also explore another covariant formalism recently developed by Poutanen and Vurm. We show that the two formalisms are mathematically equivalent in the Thomson approximation which is fully valid for the cosmic microwave background photon energies. The present finding will establish a theoretical foundation for the analysis of the Sunyaev-Zeldovich effects for the clusters of galaxies.
Starting from a covariant formalism of the Sunyaev-Zeldovich effect for the thermal and non-thermal distributions, we derive the frequency redistribution function identical to Wrights method assuming the smallness of the photon energy (in the Thomson
Based upon the rate equations for the photon distribution function obtained in the previous paper, we study the formal solutions in three different representation forms for the Sunyaev-Zeldovich effect. By expanding the formal solution in the operato
We study the Sunyaev-Zeldovich effect for clusters of galaxies. The Boltzmann equations for the cosmic microwave background photon distribution function are studied in three Lorentz frames. We extend the previous work and derive analytic expressions
We study the Sunyaev-Zeldovich effect for clusters of galaxies. The Boltzmann equations for the CMB photon distribution function are studied in three Lorentz frames. We clarify the relations of the SZ effects among the different Lorentz frames. We de
We present the first measurement of the relationship between the Sunyaev-Zeldovich effect signal and the mass of galaxy clusters that uses gravitational lensing to measure cluster mass, based on 14 X-ray luminous clusters at z~0.2 from the Local Clus