ترغب بنشر مسار تعليمي؟ اضغط هنا

Dancing in the dark: galactic properties trace spin swings along the cosmic web

81   0   0.0 ( 0 )
 نشر من قبل Yohan Dubois
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

A large-scale hydrodynamical cosmological simulation, Horizon-AGN, is used to investigate the alignment between the spin of galaxies and the cosmic filaments above redshift 1.2. The analysis of more than 150 000 galaxies per time step in the redshift range 1.2<z<1.8 with morphological diversity shows that the spin of low-mass blue galaxies is preferentially aligned with their neighbouring filaments, while high-mass red galaxies tend to have a perpendicular spin. The reorientation of the spin of massive galaxies is provided by galaxy mergers, which are significant in their mass build-up. We find that the stellar mass transition from alignment to misalignment happens around 3.10^10 M_sun. Galaxies form in the vorticity-rich neighbourhood of filaments, and migrate towards the nodes of the cosmic web as they convert their orbital angular momentum into spin. The signature of this process can be traced to the properties of galaxies, as measured relative to the cosmic web. We argue that a strong source of feedback such as active galactic nuclei is mandatory to quench in situ star formation in massive galaxies and promote various morphologies. It allows mergers to play their key role by reducing post-merger gas inflows and, therefore, keeping spins misaligned with cosmic filaments.

قيم البحث

اقرأ أيضاً

116 - Jounghun Lee 2016
A bound-violation designates a case that the turn-around radius of a bound object exceeds the upper limit put by the spherical collapse model based on the standard $Lambda$CDM paradigm. Given that the turn-around radius of a bound object is a stochas tic quantity and that the spherical model overly simplifies the true gravitational collapse which actually proceeds anisotropically along the cosmic web, the rarity of the occurrence of a bound violation may depend on the web environment. Assuming a Planck cosmology, we numerically construct the bound-zone peculiar velocity profiles along the cosmic web (filaments and sheets) around the isolated groups with virial mass $M_{rm v}ge 3times 10^{13},h^{-1}M_{odot}$ identified in the Small MultiDark Planck simulations and determine the radial distances at which their peculiar velocities equal the Hubble expansion speed as the turn-around radii of the groups. It is found that although the average turn-around radii of the isolated groups are well below the spherical bound-limit on all mass scales, the bound violations are not forbidden for individual groups and that the cosmic web has an effect of reducing the rarity of the occurrence of a bound violation. Explaining that the spherical bound limit on the turn-around radius in fact represents the threshold distance up to which the intervention of the external gravitational field in the bound-zone peculiar velocity profiles around the non-isolated groups stays negligible, we discuss the possibility of using the threshold distance scale to constrain locally the equation of state of dark energy .
We explore the evolution of halo spins in the cosmic web using a very large sample of dark matter haloes in the $Lambda$CDM Planck-Millennium N-body simulation. We use the NEXUS+ multiscale formalism to identify the hierarchy of filaments and sheets of the cosmic web at several redshifts. We find that at all times the magnitude of halo spins correlates with the web environment, being largest in filaments, and, for the first time, we show that it also correlates with filament thickness as well as the angle between spin-orientation and the spine of the host filament. For example, massive haloes in thick filaments spin faster than their counterparts in thin filaments, while for low-mass haloes the reverse is true. We also have studied the evolution of alignment between halo spin orientations and the preferential axes of filaments and sheets. The alignment varies with halo mass, with the spins of low-mass haloes being predominantly along the filament spine, while those of high-mass haloes being predominantly perpendicular to the filament spine. On average, for all halo masses, halo spins become more perpendicular to the filament spine at later times. At all redshifts, the spin alignment shows a considerable variation with filament thickness, with the halo mass corresponding to the transition from parallel to perpendicular alignment varying by more than one order of magnitude. The environmental dependence of halo spin magnitude shows little evolution for $zleq2$ and is likely a consequence of the correlations in the initial conditions or high redshift effects
We investigate the alignment of haloes with the filaments of the cosmic web using an unprecedently large sample of dark matter haloes taken from the P-Millennium $Lambda$CDM cosmological N-body simulation. We use the state-of-the-art NEXUS morphologi cal formalism which, due to its multiscale nature, simultaneously identifies structures at all scales. We find strong and highly significant alignments, with both the major axis of haloes and their peculiar velocity tending to orient along the filament. However, the spin - filament alignment displays a more complex trend changing from preferentially parallel at low masses to preferentially perpendicular at high masses. This spin flip occurs at an average mass of $5times10^{11}~h^{-1}M_odot$. This mass increases with increasing filament diameter, varying by more than an order of magnitude between the thinnest and thickest filament samples. We also find that the inner parts of haloes have a spin flip mass that is several times smaller than that of the halo as a whole. These results confirm that recent accretion is responsible for the complex behaviour of the halo spin - filament alignment. Low-mass haloes mainly accrete mass along directions perpendicular to their host filament and thus their spins tend to be oriented along the filaments. In contrast, high-mass haloes mainly accrete along their host filaments and have their spins preferentially perpendicular to them. Furthermore, haloes located in thinner filaments are more likely to accrete along their host filaments than haloes of the same mass located in thicker filaments.
91 - Marius Cautun 2015
We investigate the characteristics and the time evolution of the cosmic web from redshift, z=2, to present time, within the framework of the NEXUS+ algorithm. This necessitates the introduction of new analysis tools optimally suited to describe the v ery intricate and hierarchical pattern that is the cosmic web. In particular, we characterize filaments (walls) in terms of their linear (surface) mass density. This is very good in capturing the evolution of these structures. At early times the cosmos is dominated by tenuous filaments and sheets, which, during subsequent evolution, merge together, such that the present day web is dominated by fewer, but much more massive, structures. We also show that voids are more naturally described in terms of their boundaries and not their centres. We illustrate this for void density profiles, which, when expressed as a function of the distance from void boundary, show a universal profile in good qualitative agreement with the theoretical shell-crossing framework of expanding underdense regions.
The cosmic web is one of the most striking features of the distribution of galaxies and dark matter on the largest scales in the Universe. It is composed of dense regions packed full of galaxies, long filamentary bridges, flattened sheets and vast lo w density voids. The study of the cosmic web has focused primarily on the identification of such features, and on understanding the environmental effects on galaxy formation and halo assembly. As such, a variety of different methods have been devised to classify the cosmic web -- depending on the data at hand, be it numerical simulations, large sky surveys or other. In this paper we bring twelve of these methods together and apply them to the same data set in order to understand how they compare. In general these cosmic web classifiers have been designed with different cosmological goals in mind, and to study different questions. Therefore one would not {it a priori} expect agreement between different techniques however, many of these methods do converge on the identification of specific features. In this paper we study the agreements and disparities of the different methods. For example, each method finds that knots inhabit higher density regions than filaments, etc. and that voids have the lowest densities. For a given web environment, we find substantial overlap in the density range assigned by each web classification scheme. We also compare classifications on a halo-by-halo basis; for example, we find that 9 of 12 methods classify around a third of group-mass haloes (i.e. $M_{rm halo}sim10^{13.5}h^{-1}M_{odot}$) as being in filaments. Lastly, so that any future cosmic web classification scheme can be compared to the 12 methods used here, we have made all the data used in this paper public.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا