ترغب بنشر مسار تعليمي؟ اضغط هنا

Operation of a planar-electrode ion-trap array with adjustable RF electrodes

270   0   0.0 ( 0 )
 نشر من قبل Muir Kumph
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

One path to realizing systems of trapped atomic ions suitable for large-scale quantum computing and simulation is to create a two-dimensional array of ion traps. Interactions between nearest-neighbouring ions could then be turned on and off by tuning the ions relative positions and frequencies. We demonstrate and characterize the operation of a planar-electrode ion-trap array. Driving the trap with a network of phase-locked radio-frequency (RF) resonators which provide independently variable voltage amplitudes we vary the position and motional frequency of a 40Ca+ ion in two dimensions within the trap array. With suitable miniaturization of the trap structure, this provides a viable architecture for large-scale quantum simulations.



قيم البحث

اقرأ أيضاً

We propose a surface ion trap design incorporating microwave control electrodes for near-field single-qubit control. The electrodes are arranged so as to provide arbitrary frequency, amplitude and polarization control of the microwave field in one tr ap zone, while a similar set of electrodes is used to null the residual microwave field in a neighbouring zone. The geometry is chosen to reduce the residual field to the 0.5% level without nulling fields; with nulling, the crosstalk may be kept close to the 0.01% level for realistic microwave amplitude and phase drift. Using standard photolithography and electroplating techniques, we have fabricated a proof-of-principle electrode array with two trapping zones. We discuss requirements for the microwave drive system and prospects for scalability to a large two-dimensional trap array.
We describe the design, fabrication, and operation of a novel surface-electrode Paul trap that produces a radio-frequency-null along the axis perpendicular to the trap surface. This arrangement enables control of the vertical trapping potential and c onsequentially the ion-electrode distance via dc-electrodes only. We demonstrate confinement of single $^{40}$Ca$^+$ ions at heights between $50~mu$m and $300~mu$m above planar copper-coated aluminium electrodes. We investigate micromotion in the vertical direction and show cooling of both the planar and vertical motional modes into the ground state. This trap architecture provides a platform for precision electric-field noise detection, trapping of vertical ion strings without excess micromotion, and may have applications for scalable quantum computers with surface ion traps.
Two-dimensional crystals of trapped ions are a promising system with which to implement quantum simulations of challenging problems such as spin frustration. Here, we present a design for a surface-electrode elliptical ion trap which produces a 2-D i on crystal and is amenable to microfabrication, which would enable higher simulated coupling rates, as well as interactions based on magnetic forces generated by on-chip currents. Working in an 11 K cryogenic environment, we experimentally verify to within 5% a numerical model of the structure of ion crystals in the trap. We also explore the possibility of implementing quantum simulation using magnetic forces, and calculate J-coupling rates on the order of 10^3 / s for an ion crystal height of 10 microns, using a current of 1 A.
133 - G. Shu , G. Vittorini , C. Volin 2014
We measure ion heating following transport throughout a Y-junction surface-electrode ion trap. By carefully selecting the trap voltage update rate during adiabatic transport along a trap arm, we observe minimal heating relative to the anomalous heati ng background. Transport through the junction results in an induced heating between 37 and 150 quanta in the axial direction per traverse. To reliably measure heating in this range, we compare the experimental sideband envelope, including up to fourth-order sidebands, to a theoretical model. The sideband envelope method allows us to cover the intermediate heating range inaccessible to the first-order sideband and Doppler recooling methods. We conclude that quantum information processing in this ion trap will likely require sympathetic cooling in order to support high fidelity gates after junction transport.
We investigate anomalous ion-motional heating, a limitation to multi-qubit quantum-logic gate fidelity in trapped-ion systems, as a function of ion-electrode separation. Using a multi-zone surface-electrode trap in which ions can be held at five disc rete distances from the metal electrodes, we measure power-law dependencies of the electric-field noise experienced by the ion on the ion-electrode distance $d$. We find a scaling of approximately $d^{-4}$ regardless of whether the electrodes are at room temperature or cryogenic temperature, despite the fact that the heating rates are approximately two orders of magnitude smaller in the latter case. Through auxiliary measurements using application of noise to the electrodes, we rule out technical limitations to the measured heating rates and scalings. We also measure frequency scaling of the inherent electric-field noise close to $1/f$ at both temperatures. These measurements eliminate from consideration anomalous-heating models which do not have a $d^{-4}$ distance dependence, including several microscopic models of current interest.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا