ﻻ يوجد ملخص باللغة العربية
We present pulse sequences for two-qubit gates acting on encoded qubits for exchange-only quantum computation. Previous work finding such sequences has always required numerical methods due to the large search space of unitary operators acting on the space of the encoded qubits. By contrast, our construction can be understood entirely in terms of three-dimensional rotations of effective spin-1/2 pseudospins which allows us to use geometric intuition to determine the required sequence of operations analytically. The price we pay for this simplification is that, at 39 pulses, our sequences are significantly longer than the best numerically obtained sequences.
Global control strategies for arrays of qubits are a promising pathway to scalable quantum computing. A continuous-wave global field provides decoupling of the qubits from background noise. However, this approach is limited by variability in the para
In topological quantum computation, quantum information is stored in states which are intrinsically protected from decoherence, and quantum gates are carried out by dragging particle-like excitations (quasiparticles) around one another in two space d
A scheme based on Coherent Tunneling by Adiabatic Passage (CTAP) of exchange-only spin qubit quantum states in a linearly arranged double quantum dot chain is demonstrated. Logical states for the qubit are defined by adopting the spin state of three
We introduce the concept of embedding quantum simulators, a paradigm allowing the efficient quantum computation of a class of bipartite and multipartite entanglement monotones. It consists in the suitable encoding of a simulated quantum dynamics in t
The hopes for scalable quantum computing rely on the threshold theorem: once the error per qubit per gate is below a certain value, the methods of quantum error correction allow indefinitely long quantum computations. The proof is based on a number o