ﻻ يوجد ملخص باللغة العربية
Consider the focusing energy-critical wave equation in space dimension 3, 4 or 5. In a previous paper, we proved that any solution which is bounded in the energy space converges, along a sequence of times and in some weak sense, to a solution with the compactness property, that is a solution whose trajectory stays in a compact subset of the energy space up to space translation and scaling. It is conjectured that the only solutions with the compactness property are stationary solutions and solitary waves that are Lorentz transforms of the former. In this note we prove this conjecture with an additional non-degeneracy assumption related to the invariances of the elliptic equation satisfied by stationary solutions. The proof uses a standard monotonicity formula, modulation theory, and a new channel of energy argument which is independent of the space dimension.
Consider the energy-critical focusing wave equation in space dimension $Ngeq 3$. The equation has a nonzero radial stationary solution $W$, which is unique up to scaling and sign change. It is conjectured (soliton resolution) that any radial, bounded
We consider the nonlinear damped Klein-Gordon equation [ partial_{tt}u+2alphapartial_{t}u-Delta u+u-|u|^{p-1}u=0 quad text{on} [0,infty)times mathbb{R}^N ] with $alpha>0$, $2 le Nle 5$ and energy subcritical exponents $p>2$. We study the behavior o
Consider a finite energy radial solution to the focusing energy critical semilinear wave equation in 1+4 dimensions. Assume that this solution exhibits type-II behavior, by which we mean that the critical Sobolev norm of the evolution stays bounded o
We consider the energy-critical semilinear focusing wave equation in dimension $N=3,4,5$. An explicit solution $W$ of this equation is known. By the work of C. Kenig and F. Merle, any solution of initial condition $(u_0,u_1)$ such that $E(u_0,u_1)<E(
We consider the energy-critical non-linear focusing wave equation in dimension N=3,4,5. An explicit stationnary solution, $W$, of this equation is known. The energy E(W,0) has been shown by C. Kenig and F. Merle to be a threshold for the dynamical be