ترغب بنشر مسار تعليمي؟ اضغط هنا

Scattering norm estimate near the threshold for energy-critical focusing semilinear wave equation

255   0   0.0 ( 0 )
 نشر من قبل Thomas Duyckaerts
 تاريخ النشر 2008
  مجال البحث
والبحث باللغة English
 تأليف Thomas Duyckaerts




اسأل ChatGPT حول البحث

We consider the energy-critical semilinear focusing wave equation in dimension $N=3,4,5$. An explicit solution $W$ of this equation is known. By the work of C. Kenig and F. Merle, any solution of initial condition $(u_0,u_1)$ such that $E(u_0,u_1)<E(W,0)$ and $| abla u_0|_{L^2}<| abla W|_{L^2}$ is defined globally and has finite $L^{frac{2(N+1)}{N-2}}_{t,x}$-norm, which implies that it scatters. In this note, we show that the supremum of the $L^{frac{2(N+1)}{N-2}}_{t,x}$-norm taken on all scattering solutions at a certain level of energy below $E(W,0)$ blows-up logarithmically as this level approaches the critical value $E(W,0)$. We also give a similar result in the case of the radial energy-critical focusing semilinear Schrodinger equation. The proofs rely on the compactness argument of C. Kenig and F. Merle, on a classification result, due to the authors, at the energy level $E(W,0)$, and on the analysis of the linearized equation around $W$.



قيم البحث

اقرأ أيضاً

Consider a finite energy radial solution to the focusing energy critical semilinear wave equation in 1+4 dimensions. Assume that this solution exhibits type-II behavior, by which we mean that the critical Sobolev norm of the evolution stays bounded o n the maximal interval of existence. We prove that along a sequence of times tending to the maximal forward time of existence, the solution decomposes into a sum of dynamically rescaled solitons, a free radiation term, and an error tending to zero in the energy space. If, in addition, we assume that the critical norm of the evolution localized to the light cone (the forward light cone in the case of global solutions and the backwards cone in the case of finite time blow-up) is less than 2 times the critical norm of the ground state solution W, then the decomposition holds without a restriction to a subsequence.
185 - Yongming Luo 2021
We extend the scattering result for the radial defocusing-focusing mass-energy double critical nonlinear Schrodinger equation in $dleq 4$ given by Cheng et al. to the case $dgeq 5$. The main ingredient is a suitable long time perturbation theory whic h is applicable for $dgeq 5$. The paper will therefore give a full characterization on the scattering threshold for the radial defocusing-focusing mass-energy double critical nonlinear Schrodinger equation in all dimensions $dgeq 3$.
163 - Thomas Duyckaerts 2007
We consider the energy-critical non-linear focusing wave equation in dimension N=3,4,5. An explicit stationnary solution, $W$, of this equation is known. The energy E(W,0) has been shown by C. Kenig and F. Merle to be a threshold for the dynamical be havior of solutions of the equation. In the present article we study the dynamics at the critical level E(u_0,u_1)=E(W,0) and classify the corresponding solutions. We show in particular the existence of two special solutions, connecting different behaviors for negative and positive times. Our results are analoguous to our previous work on radial Schrodinger equation, but without any radial assumption on the data. We also refine the understanding of the dynamical behavior of the special solutions.
Consider the energy-critical focusing wave equation in space dimension $Ngeq 3$. The equation has a nonzero radial stationary solution $W$, which is unique up to scaling and sign change. It is conjectured (soliton resolution) that any radial, bounded in the energy norm solution of the equation behaves asymptotically as a sum of modulated $W$s, decoupled by the scaling, and a radiation term. A nonradiative solution of the equation is by definition a solution whose energy in the exterior ${|x|>|t|}$ of the wave cone vanishes asymptotically as $tto +infty$ and $tto -infty$. In a previous work (Cambridge Journal of Mathematics 2013, arXiv:1204.0031), we have proved that the only radial nonradiative solutions of the equation in three space dimensions are, up to scaling, $0$ and $pm W$. This was crucial in the proof of soliton resolution in 3 space dimension. In this paper, we prove that the initial data of a radial nonradiative solution in odd space dimension have a prescribed asymptotic behaviour as $rto infty$. We will use this property for the proof of soliton resolution, for radial data, in all odd space dimensions. The proof uses the characterization of nonradiative solutions of the linear wave equation in odd space dimensions obtained by Lawrie, Liu, Schlag and the second author (Advances in Mathematics, 2015, arXiv:1409.3643) . We also study the propagation of the support of nonzero radial solutions with compactly supported initial data, and prove that these solutions cannot be nonradiative.
This article resolves some errors in the paper Scattering threshold for the focusing nonlinear Klein-Gordon equation, Analysis & PDE 4 (2011) no. 3, 405-460. The errors are in the energy-critical cases in two and higher dimensions.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا