ترغب بنشر مسار تعليمي؟ اضغط هنا

Low-energy excitations of a one-dimensional Bose gas with weak contact repulsion

241   0   0.0 ( 0 )
 نشر من قبل Michael Pustilnik
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We study elementary excitations of a system of one-dimensional bosons with weak contact repulsion. We show that the Gross-Pitaevskii regime, in which the excitations are the well-known Bogoliubov quasiparticles and dark solitons, does not extend to the low energy limit. Instead, the spectra of both excitations have finite curvatures at zero momentum, in agreement with the phenomenological picture of fermionic quasiparticles. We describe analytically the crossover between the Gross-Pitaevskii and the low-energy regimes, and discuss implications of our results for the behavior of the dynamic structure factor.



قيم البحث

اقرأ أيضاً

We present a new theoretical framework for describing an impurity in a trapped Bose system in one spatial dimension. The theory handles any external confinement, arbitrary mass ratios, and a weak interaction may be included between the Bose particles . To demonstrate our technique, we calculate the ground state energy and properties of a sample system with eight bosons and find an excellent agreement with numerically exact results. Our theory can thus provide definite predictions for experiments in cold atomic gases.
We experimentally study the dynamics of a degenerate one-dimensional Bose gas that is subject to a continuous outcoupling of atoms. Although standard evaporative cooling is rendered ineffective by the absence of thermalizing collisions in this system , we observe substantial cooling. This cooling proceeds through homogeneous particle dissipation and many-body dephasing, enabling the preparation of otherwise unexpectedly low temperatures. Our observations establish a scaling relation between temperature and particle number, and provide insights into equilibration in the quantum world.
We present a theoretical study based upon quantum Monte Carlo methods of the Bose polaron in one-dimensional systems with contact interactions. In this instance of the problem of a single impurity immersed in a quantum bath, the medium is a Lieb-Lini ger gas of bosons ranging from the weakly interacting to the Tonks-Girardeau regime, whereas the impurity is coupled to the bath via a different contact potential producing both repulsive and attractive interactions. Both the case of a mobile impurity, having the same mass as the particles in the medium, and of a static impurity with infinite mass are considered. We make use of exact numerical techniques that allow us to calculate the ground-state energy of the impurity, its effective mass as well as the contact parameter between the impurity and the bath. These quantities are investigated as a function of the strength of interactions between the impurity and the bath and within the bath. In particular, we find that the effective mass rapidly increases to very large values when the impurity gets strongly coupled to an otherwise weakly repulsive bath. This heavy impurity hardly moves within the medium, thereby realizing the self-localization regime of the Landau-Pekar polaron. Furthermore, we compare our results with predictions of perturbation theory valid for weak interactions and with exact solutions available when the bosons in the medium behave as impenetrable particles.
We study the viscous properties of a system of weakly interacting spin-$frac{1}{2}$ fermions in one dimension. Accounting for the effect of interactions on the quasiparticle energy spectrum, we obtain the bulk viscosity of this system at low temperat ures. Our result is valid for frequencies that are small compared with the rate of fermion backscattering. For frequencies larger than this exponentially small rate, the excitations of the system become decoupled from the center of mass motion, and the fluid is described by two-fluid hydrodynamics. We calculate the three transport coefficients required to describe viscous dissipation in this regime.
We show that the dynamic structure factor of a one-dimensional Bose liquid has a power-law singularity defining the main mode of collective excitations. Using the Lieb-Liniger model, we evaluate the corresponding exponent as a function of the wave vector and the interaction strength.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا