ﻻ يوجد ملخص باللغة العربية
We experimentally study the dynamics of a degenerate one-dimensional Bose gas that is subject to a continuous outcoupling of atoms. Although standard evaporative cooling is rendered ineffective by the absence of thermalizing collisions in this system, we observe substantial cooling. This cooling proceeds through homogeneous particle dissipation and many-body dephasing, enabling the preparation of otherwise unexpectedly low temperatures. Our observations establish a scaling relation between temperature and particle number, and provide insights into equilibration in the quantum world.
We analyze free expansion of a trapped one-dimensional Bose gas after a sudden release from the confining trap potential. By using the stationary phase and local density approximations, we show that the long-time asymptotic density profile and the mo
We calculate the spatial distributions and the dynamics of a few-body two-component strongly interacting Bose gas confined to an effectively one-dimensional trapping potential. We describe the densities for each component in the trap for different in
We prepare a chemically and thermally one-dimensional (1d) quantum degenerate Bose gas in a single microtrap. We introduce a new interferometric method to distinguish the quasicondensate fraction of the gas from the thermal cloud at finite temperatur
We analyze the two-body momentum correlation function for a uniform weakly interacting one-dimensional Bose gas. We show that the strong positive correlation between opposite momenta, expected in a Bose-Einstein condensate with a true long-range orde
Two-dimensional (2D) systems play a special role in many-body physics. Because of thermal fluctuations, they cannot undergo a conventional phase transition associated to the breaking of a continuous symmetry. Nevertheless they may exhibit a phase tra