ترغب بنشر مسار تعليمي؟ اضغط هنا

Fine structure of phonon replicas in a tunnel spectrum of a GaAs quantum well

264   0   0.0 ( 0 )
 نشر من قبل Vladimir Krishtop
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

A fine structure of phonon replicas in the current-voltage characteristic of a resonant-tunneling diode has been investigated experimentally. A detailed study of the diode I-V curves in magnetic fields of different orientations has allowed to determine the origin of the features in the fine structure. The voltage positions of the features are shown to coincide with calculated that in the frame of two models: LO-phonon assisted tunneling and resonant tunneling of polarons.

قيم البحث

اقرأ أيضاً

We employ inelastic light scattering with magnetic fields to study intersubband spin plasmons in a quantum well. We demonstrate the existence of a giant collective spin-orbit (SO) field that splits the spin-plasmon spectrum into a triplet. The effect is remarkable as each individual electron would be expected to precess in its own momentum-dependent SO field, leading to Dyakonov-Perel dephasing. Instead, many-body effects lead to a striking organization of the SO fields at the collective level. The macroscopic spin moment is quantized by a uniform collective SO field, five times higher than the individual SO field. We provide a momentum-space cartography of this field.
89 - J. Shumway 2005
We present a computer simulation of exciton-exciton scattering in a quantum well. Specifically, we use quantum Monte Carlo techniques to study the bound and continuum states of two excitons in a 10 nm wide GaAs/Al$_{0.3}$Ga$_{0.7}$As quantum well. Fr om these bound and continuum states we extract the momentum-dependent phase shifts for s-wave scattering. A surprising finding of this work is that a commonly studied effective-mass mode for excitons in a 10 nm quantum well actually supports two bound biexciton states. The second, weakly bound state may dramatically enhance exciton-exciton interactions. We also fit our results to a hard-disk model and indicate directions for future work.
We study phonon emission in a GaAs/AlGaAs double quantum dot by monitoring the tunneling of a single electron between the two dots. We prepare the system such that a known amount of energy is emitted in the transition process. The energy is converted into lattice vibrations and the resulting tunneling rate depends strongly on the phonon scattering and its effective phonon spectral density. We are able to fit the measured transition rates and see imprints of interference of phonons with themselves causing oscillations in the transition rates.
63 - Dong Xu , Nan Zhao , 2007
Exciton levels and fine-structure splitting in laterally-coupled quantum dot molecules are studied. The electron and hole tunneling energies as well as the direct Coulomb interaction are essential for the exciton levels. It is found that fine-structu re splitting of the two-lowest exciton levels is contributed from the intra- and inter-dot exchange interactions, both of which are largely influenced by the symmetry and tunnel-coupling between the two dots. As the inter-dot separation is reduced, fine-structure splitting of the exciton ground state is largely increased while those of the excited states are decreased. Moreover, the dependence of the fine-structure splitting in quantum dot molecules on the Coulomb correlation is clearly clarified.
174 - M. Studer , G. Salis , K. Ensslin 2009
We study the tunability of the spin-orbit interaction in a two-dimensional electron gas with a front and a back gate electrode by monitoring the spin precession frequency of drifting electrons using time-resolved Kerr rotation. The Rashba spin splitt ing can be tuned by the gate biases, while we find a small Dresselhaus splitting that depends only weakly on the gating. We determine the absolute values and signs of the two components and show that for zero Rashba spin splitting the anisotropy of the spin-dephasing rate vanishes.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا