ﻻ يوجد ملخص باللغة العربية
Single crystal of PrSi was grown by Czochralski method in a tetra-arc furnace. Powder x-ray diffraction of the as grown crystal revealed that PrSi crystallizes in FeB$-$type structure with space group $Pnma$ (no. 62). PrSi undergoes a ferromagnetic transition at 52 K with [010] direction as the easy axis of magnetization. Heat capacity data confirm the bulk nature of the transition at 52 K and exhibit a huge anomaly at the transition. A sharp rise in the low temperature heat capacity has been observed (below 5 K) which is attributed to the $^{141}$Pr nuclear Schottky heat capacity arising from the hyperfine field of the Pr moment. The estimated Pr magnetic moment 2.88 $mu_{rm B}$/Pr from the hyperfine splitting is in agreement with the saturation magnetization value obtained from the magnetization data measured at 2 K. From the crystal electric field (CEF) analysis of the magnetic susceptibility, magnetization and the heat capacity data it is found that the degenerate $J = 4$ Hunds rule derived state of Pr$^{3+}$-ion splits into nine singlets with an overall splitting of 284 K, the first excited singlet state separated by just 9 K from the ground state. The magnetic ordering in PrGe appears to be due to the exchange generated admixture of low lying crystal field levels. Magnetocaloric effect (MCE) has been investigated from magnetization data along all the three principal crystallographic directions. Large magnetic entropy change, $-Delta S_M = $22.2 J/kg K, and the relative cooling power, RCP = $460$ J/kg, characteristic of giant magneto caloric effect are achieved near the transition temperature ($T_{rm C}$ = 52 K) for $H =$~70 kOe along $[010]$. Furthermore, the PrSi single crystal exhibits a giant MCE anisotropy.
We present the results of a thorough study of the specific heat and magnetocaloric properties of a ludwigite crystal Cu2MnBO5 over a temperature range of 60 - 350 K and in magnetic fields up to 18 kOe. It is found that at temperatures below the Curie
Single crystals of CeGe and its non-magnetic analogue LaGe have been grown by Czochralski method. CeGe compound crystallizes in the orthorhombic FeB-type crystal structure with the space group textit{Pnma} (#62). The anisotropic magnetic properties h
We report the anisotropic magnetic properties of the ternary compound ErAl$_2$Ge$_2$. Single crystals of this compound were grown by high temperature solution growth technique,using Al:Ge eutectic composition as flux. From the powder x-ray diffractio
The anisotropic magnetic properties of the antiferromagnetic compound CePd$_2$Ge$_2$, crystallizing in the tetragonal crystal structure have been investigated in detail on a single crystal grown by Czochralski method. From the electrical transport, m
EuRhAl4Si2, crystallizes in tetragonal crystal structure and orders antiferromagnetically at ~12 K. The isothermal magnetization along the two principle directions is highly anisotropic despite Eu2+ being an S-state ion. The variation of entropy chan