ترغب بنشر مسار تعليمي؟ اضغط هنا

Anisotropic magnetic properties and crystal electric field studies on CePd$_2$Ge$_2$ single crystal

99   0   0.0 ( 0 )
 نشر من قبل Arvind Maurya
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The anisotropic magnetic properties of the antiferromagnetic compound CePd$_2$Ge$_2$, crystallizing in the tetragonal crystal structure have been investigated in detail on a single crystal grown by Czochralski method. From the electrical transport, magnetization and heat capacity data, the N{e}el temperature is confirmed to be 5.1 K. Anisotropic behaviour of magnetization and resistivity is observed along the two principal crystallographic directions viz., [100] and [001]. The isothermal magnetization measured in the magnetically ordered state at 2 K exhibits a spin re-orientation at 13.5 T for field applied along [100] direction, whereas the magnetization was linear along the [001] direction attaining a value of 0.94 $mu_{rm B}$/Ce at 14 T. The reduced value of the magnetization is attributed to the crystalline electric field (CEF) effects. A sharp jump in the specific heat at the magnetic ordering temperature is observed. After subtracting the phononic contribution, the jump in the heat capacity amounts to 12.5 J/K mol which is the expected value for a spin ${1}{2}$ system. From the CEF analysis of the magnetization data the excited crystal field split energy levels were estimated to be at 120 K and 230 K respectively, which quantitatively explain the observed Schottky anomaly in the heat capacity. A magnetic phase diagram has been constructed based on the field dependence of magnetic susceptibility and the heat capacity data.

قيم البحث

اقرأ أيضاً

We report the anisotropic magnetic properties of the ternary compound ErAl$_2$Ge$_2$. Single crystals of this compound were grown by high temperature solution growth technique,using Al:Ge eutectic composition as flux. From the powder x-ray diffractio n we confirmed that ErAl$_2$Ge$_2$ crystallizes in the trigonal CaAl$_2$Si$_2$-type crystal structure. The anisotropic magnetic properties of a single crystal were investigated by measuring the magnetic susceptibility, magnetization, heat capacity and electrical resistivity. A bulk magnetic ordering occurs around 4 K inferred from the magnetic susceptibility and the heat capacity. The magnetization measured along the $ab$-plane increases more rapidly than along the $c$-axis suggesting the basal $ab$-plane as the easy plane of magnetization. The magnetic susceptibility, magnetization and the $4f$-derived part of the heat capacity in the paramagnetic regime analysed based on the point charge model of the crystalline electric field (CEF) indicate a relatively low CEF energy level splitting.
We have successfully grown the single crystals of CeAg$_2$Ge$_2$, for the first time, by flux method and studied the anisotropic physical properties by measuring the electrical resistivity, magnetic susceptibility and specific heat. We found that CeA g$_2$Ge$_2$ undergoes an antiferromagnetic transition at $T_{rm N}$ = 4.6 K. The electrical resistivity and susceptibility data reveal strong anisotropic magnetic properties. The magnetization measured at $T$ = 2 K exhibited two metamagnetic transitions at $H_{rm m1}$ = 31 kOe and $H_{rm m2}$ = 44.7 kOe, for $H parallel$ [100] with a saturation magnetization of 1.6 $mu_{rm B}$/Ce. The crystalline electric field (CEF) analysis of the inverse susceptibility data reveals that the ground state and the first excited states of CeAg$_2$Ge$_2$ are closely spaced indicating a quasi-quartet ground state. The specific heat data lend further support to the presence of closely spaced energy levels.
81 - Arvind Maurya , S. K. Dhar , 2017
The magnetocrystalline anisotropy exhibited in PrPd$_2$Ge$_2$ single crystal has been investigated by measuring the magnetization, magnetic susceptibility, electrical resistivity and heat capacity. PrPd$_2$Ge$_2$ crystallizes in the well known ThCr$_ 2$Si$_2$--type tetragonal structure. The antiferromagnetic ordering is confirmed as 5.1~K with the [001]-axis as the easy axis of magnetization. A superzone gap formation is observed from the electrical resistivity measurement when the current is passed along the [001] direction. The crystal electric field (CEF) analysis on the magnetic susceptibility, magnetization and the heat capacity measurements confirms a doublet ground state with a relatively low over all CEF level splitting. The CEF level spacings and the Zeeman splitting at high fields become comparable and lead to metamagnetic transition at 34~T due to the CEF level crossing.
We report the single crystal growth and anisotropic magnetic properties of the tetragonal RAg$_2$Ge$_2$ (R = Pr, Nd and Sm) compounds which crystallize in the ThCr$_2$Si$_2$ type crystal structure with the space group textit{I4/mmm}. The single cryst als of RAg$_2$Ge$_2$ (R = Pr, Nd and Sm) were grown by self-flux method using Ag:Ge binary alloy as flux. From the magnetic studies on single crystalline samples we have found that PrAg$_2$Ge$_2$ and NdAg$_2$Ge$_2$ order antiferromagnetically at 12 K and 2 K respectively, thus corroborating the earlier polycrystalline results. SmAg$_2$Ge$_2$ also orders antiferromagnetically at 9.2 K. The magnetic susceptibility and magnetization show a large anisotropy and the easy axis of magnetization for PrAg$_2$Ge$_2$ and NdAg$_2$Ge$_2$ is along the [100] direction where as it changes to [001] direction for SmAg$_2$Ge$_2$. Two metamagnetic transitions were observed in NdAg$_2$Ge$_2$ at $H_{rm m1}$ = 1.25 T and $H_{rm m2}$ =3.56 T for the field parallel to [100] direction where as the magnetization along [001] direction was linear indicating the hard axis of magnetization.
We report Raman-scattering results of YbRu$_2$Ge$_2$ single crystals to explore the phononic and crystal-field (CF) excitations. This heavy-fermion metal is suggested to enter a ferroquadrupolar (FQ) phase below T$_0$=10 K. The tetragonal CF potentia l splits the Yb$^{3+}$ $^2F_{7/2}$ ground multiplet into two $Gamma_6$ and two $Gamma_7$ Kramers doublets. We establish the following CF level scheme of the ground multiplet: a $Gamma_6$ ground state, with the two $Gamma_7$ states at 2 cm$^{-1}$, 95 cm$^{-1}$ and the other $Gamma_6$ state at 239 cm$^{-1}$. The $sim$2 cm$^{-1}$ separation between the CF ground and first excited states is in agreement with the previously proposed quasi-quartet CF ground state. The intensity of the lowest-energy CF transition remarkably increases on cooling, indicating a coupling of this CF excitation to the quadrupolar fluctuations above T$_0$. From symmetry analysis, we suggest that the FQ order has B$_{1g}$ symmetry. Moreover, temperature-dependent study of four Raman-active phonon modes shows that the intensities of the A$_{1g}$ and one E$_{g}$ modes increase significantly on cooling, which is explained by a near-resonant coupling between these two phonon modes and CF transitions.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا