ترغب بنشر مسار تعليمي؟ اضغط هنا

Numerical Studies of Optimization and Aberration Correction Methods for the Preliminary Demonstration of the Parametric Ionization Cooling (PIC) Principle in the Twin Helix Muon Cooling Channel

38   0   0.0 ( 0 )
 نشر من قبل James Maloney
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Muon colliders have been proposed for the next generation of particle accelerators that study high-energy physics at the energy and intensity frontiers. In this paper we study a possible implementation of muon ionization cooling, Parametric-resonance Ionization Cooling (PIC), in the twin helix channel. The resonant cooling method of PIC offers the potential to reduce emittance beyond that achievable with ionization cooling with ordinary magnetic focusing. We examine optimization of a variety of parameters, study the nonlinear dynamics in the twin helix channel and consider possible methods of aberration correction.

قيم البحث

اقرأ أيضاً

High-brightness muon beams of energy comparable to those produced by state-of-the-art electron, proton and ion accelerators have yet to be realised. Such beams have the potential to carry the search for new phenomena in lepton-antilepton collisions t o extremely high energy and also to provide uniquely well-characterised neutrino beams. A muon beam may be created through the decay of pions produced in the interaction of a proton beam with a target. To produce a high-brightness beam from such a source requires that the phase space volume occupied by the muons be reduced (cooled). Ionization cooling is the novel technique by which it is proposed to cool the beam. The Muon Ionization Cooling Experiment collaboration has constructed a section of an ionization cooling cell and used it to provide the first demonstration of ionization cooling. We present these ground-breaking measurements.
Muon accelerators offer an attractive option for a range of future particle physics experiments. They can enable high energy (TeV+) high energy lepton colliders whilst mitigating the difficulty of synchrotron losses, and can provide intense beams of neutrinos for fundamental physics experiments investigating the physics of flavor. The method of production of muon beams results in high beam emittance which must be reduced for efficient acceleration. Conventional emittance control schemes take too long, given the very short (2.2 microsecond) rest lifetime of the muon. Ionisation cooling offers a much faster approach to reducing particle emittance, and the international MICE collaboration aims to demonstrate this technique for the first time. This paper will present the MICE RF system and its role in the context of the overall experiment.
Possible application for muon experiments such as mu2e is discussed of the initial part of the ionization cooling channel originally developed for muon collider. It is shown that with the FNAL Booster as the proton driver the mu2e sensitivity can be increased by two orders of magnitude compared to the presently considered experiment.
98 - D. M. Kaplan , K. Long 2007
Muon storage rings have been proposed for use as a source of high-energy neutrino beams (the Neutrino Factory) and as the basis for a high-energy lepton-antilepton collider (the Muon Collider). The Neutrino Factory is widely believed to be the machin e of choice for the search for leptonic CP violation while the Muon Collider may prove to be the most practical route to multi-TeV lepton-antilepton collisions. The baseline conceptual designs for each of these facilities requires the phase-space compression (cooling) of the muon beams prior to acceleration. The short muon lifetime makes it impossible to employ traditional techniques to cool the beam while maintaining the muon-beam intensity. Ionization cooling, a process in which the muon beam is passed through a series of liquid-hydrogen absorbers followed by accelerating RF cavities, is the technique proposed to cool the muon beam. The international Muon Ionization Cooling Experiment (MICE) collaboration will carry out a systematic study of ionization cooling. The MICE experiment, which is under construction at the Rutherford Appleton Laboratory, will begin to take data late this year. The MICE cooling channel, the instrumentation and the implementation at the Rutherford Appleton Laboratory are described together with the predicted performance of the channel and the measurements that will be made.
Muon beams of low emittance provide the basis for the intense, well-characterised neutrino beams necessary to elucidate the physics of flavour at a neutrino factory and to provide lepton-antilepton collisions at energies of up to several TeV at a muo n collider. The international Muon Ionization Cooling Experiment (MICE) aims to demonstrate ionization cooling, the technique by which it is proposed to reduce the phase-space volume occupied by the muon beam at such facilities. In an ionization-cooling channel, the muon beam passes through a material in which it loses energy. The energy lost is then replaced using RF cavities. The combined effect of energy loss and re-acceleration is to reduce the transverse emittance of the beam (transverse cooling). A major revision of the scope of the project was carried out over the summer of 2014. The revised experiment can deliver a demonstration of ionization cooling. The design of the cooling demonstration experiment will be described together with its predicted cooling performance.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا