ﻻ يوجد ملخص باللغة العربية
High-brightness muon beams of energy comparable to those produced by state-of-the-art electron, proton and ion accelerators have yet to be realised. Such beams have the potential to carry the search for new phenomena in lepton-antilepton collisions to extremely high energy and also to provide uniquely well-characterised neutrino beams. A muon beam may be created through the decay of pions produced in the interaction of a proton beam with a target. To produce a high-brightness beam from such a source requires that the phase space volume occupied by the muons be reduced (cooled). Ionization cooling is the novel technique by which it is proposed to cool the beam. The Muon Ionization Cooling Experiment collaboration has constructed a section of an ionization cooling cell and used it to provide the first demonstration of ionization cooling. We present these ground-breaking measurements.
Muon storage rings have been proposed for use as a source of high-energy neutrino beams (the Neutrino Factory) and as the basis for a high-energy lepton-antilepton collider (the Muon Collider). The Neutrino Factory is widely believed to be the machin
The Muon Ionization Cooling Experiment (MICE) collaboration seeks to demonstrate the feasibility of ionization cooling, the technique by which it is proposed to cool the muon beam at a future neutrino factory or muon collider. The emittance is measur
Progress on six dimensional ionization muon cooling with relatively small rings of magnets is described. Lattices being explored include scaling sector cyclotrons with edge focusing and strong focusing, fixed field alternating gradient (FFAG) rings.
The Muon Ionization Cooling Experiment (MICE) is a strategic R&D project intended to demonstrate the only practical solution to providing high brilliance beams necessary for a neutrino factory or muon collider. MICE is under development at the Ruther
Possible application for muon experiments such as mu2e is discussed of the initial part of the ionization cooling channel originally developed for muon collider. It is shown that with the FNAL Booster as the proton driver the mu2e sensitivity can be