ترغب بنشر مسار تعليمي؟ اضغط هنا

Doubts about the crucial role of the rising-tube mechanism in the formation of sunspot groups

57   0   0.0 ( 0 )
 نشر من قبل Alexander Getling
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Some preliminary processing results are presented for a dataset obtained with the Solar Optical Telescope on the Hinode satellite. The idea of the project is to record, nearly simultaneously, the full velocity and magnetic-field vectors in growing active regions and sunspot groups at a photospheric level. Our ultimate aim is to elaborate observational criteria to distinguish between the manifestations of two mechanisms of sunspot-group formation --- the rising of an Omega-shaped flux tube of a strong magnetic field and the in situ amplification and structuring of magnetic field by convection (the convective mechanism is briefly described). Observations of a young bipolar subregion developing within AR 11313 were carried out on 9--10 October 2011. Based on the series of filtergrams, the trajectories of corks are computed, using a technique similar to but more reliable than local correlation tracking (LCT), and compared with the magnetic maps. At this stage of the investigation, only the vertical magnetic field and the horizontal flows are used for a qualitative analysis. According to our preliminary findings, the velocity pattern in the growing active region has nothing to do with a spreading flow on the scale of the entire bipolar region, which could be expected if a tube of strong magnetic field emerged. No violent spreading flows on the scale of the entire growing magnetic region can be identified. Instead, normal mesogranular and supergranular flows are preserved. The observed scenario of evolution seems to agree with Bumbas inference that the development of an active region does not entail the destruction of the existing convective-velocity field. The convective mechanism appears to be better compatible with observations than the rising-tube mechanism.

قيم البحث

اقرأ أيضاً

71 - H. Hotta , H. Iijima 2020
We investigate the rising flux tube and the formation of sunspots in an unprecedentedly deep computational domain that covers the whole convection zone with a radiative magnetohydrodynamics simulation. Previous calculations had shallow computational boxes (< 30 Mm) and convection zones at a depth of 200 Mm. By using our new numerical code R2D2, we succeed in covering the whole convection zone and reproduce the formation of the sunspot from a simple horizontal flux tube because of the turbulent thermal convection. The main findings are (1) The rising speed of the flux tube is larger than the upward convection velocity because of the low density caused by the magnetic pressure and the suppression of the mixing. (2) The rising speed of the flux tube exceeds 250 m/s at a depth of 18 Mm, while we do not see any clear evidence of the divergent flow 3 hr before the emergence at the solar surface. (3) Initially, the root of the flux tube is filled with the downflows and then the upflow fills the center of the flux tube during the formation of the sunspot. (4) The essential mechanisms for the formation of the sunspot are the coherent inflow and the turbulent transport. (5) The low-temperature region is extended to a depth of at least 40 Mm in the matured sunspot, with the high-temperature region in the center of the flux tube. Some of the findings indicate the importance of the deep computational domain for the flux emergence simulations.
We explore with self-consistent 2D F{sc{ornax}} simulations the dependence of the outcome of collapse on many-body corrections to neutrino-nucleon cross sections, the nucleon-nucleon bremsstrahlung rate, electron capture on heavy nuclei, pre-collapse seed perturbations, and inelastic neutrino-electron and neutrino-nucleon scattering. Importantly, proximity to criticality amplifies the role of even small changes in the neutrino-matter couplings, and such changes can together add to produce outsized effects. When close to the critical condition the cumulative result of a few small effects (including seeds) that individually have only modest consequence can convert an anemic into a robust explosion, or even a dud into a blast. Such sensitivity is not seen in one dimension and may explain the apparent heterogeneity in the outcomes of detailed simulations performed internationally. A natural conclusion is that the different groups collectively are closer to a realistic understanding of the mechanism of core-collapse supernovae than might have seemed apparent.
Size distribution of sunspots provides key information about the generation and emergence processes of the solar magnetic field. Previous studies on the size distribution have primarily focused on either the whole group or individual spot areas. In t his paper, we investigate the organization of spot areas within sunspot groups. In particular, we analyze the ratio, $rm{R}$, of the area of the biggest spot ($rm{A_{big_spot}}$) inside a group, to the total area of that group ($rm{A_{group}}$). We use sunspot observations from Kislovodsk, Pulkovo and Debrecen observatories, together covering solar cycles 17 to 24. We find that at the time when the group area reaches its maximum, the single biggest spot in a group typically occupies about 60% of the group area. For half of all groups, $rm R$ lies in the range between roughly 50% and 70%. We also find R to change with the group area, $rm{A_{group}}$, such that $rm{R}$ reaches a maximum of about 0.65 for groups with $rm{A_{group}}approx 200mu$Hem and then remains at about 0.6 for lager groups. Our findings imply a scale invariant emergence pattern, providing an observational constraint on the emergence process. Furthermore, extrapolation of our results to larger sunspot groups may have a bearing on the giant unresolved starspot features found in Doppler images of highly active sun-like stars. Our results suggest that such giant features are composed of multiple spots, with the largest spot occupying roughly 55--75% of the total group area (i.e. of the area of the giant starspots seen in Doppler images).
We revise the sunspot observations made by Galileo Galilei and Christoph Scheiner in the context of their controversy on the nature of sunspots. Their sunspot records not included in the current sunspot group database, used as a basis to calculate th e sunspot group number, are analyzed. Within the documentary sources consulted in this work, we can highlight the sunspot observations by Scheiner included in the letters sent under the pseudonym Apelles to Marcus Welser and the first sunspot observations made by Galileo, which can be consulted in Le opere di Galileo Galilei. These sunspot observations would extend the temporal coverage for these two observers and filling some gaps in the current group database in the earliest period where the data available is sparse. Moreover, we have detected changes in the quality of the sunspot drawings made by Galileo and Scheiner in their observation series affecting to the number of groups recorded by the two observers. We also compare these records with sunspot observations made by other astronomers of that time. According to this comparison and regarding the same observation days, Scheiner was generally the astronomer who reported more sunspot groups while Harriot, Cigoli, and Galileo recorded a similar number of groups. We conclude these differences are mainly because of the observational method used by the observers.
We analyse the evolution of close binary systems containing a neutron star that lead to the formation of redback pulsars. Recently there has been some debate on the origin of such systems and the formation mechanism of redbacks may still be considere d as an open problem. We show that the operation of a strong evaporation mechanism, starting from the moment when the donor star becomes fully convective (or alternatively since the formation of the neutron star by accretion induced collapse), produces systems with donor masses and orbital periods in the range corresponding to redbacks with donors appreciably smaller than their Roche lobes, i.e., they have low filling factors (lower than $0.75$). Models of redback pulsars can be constructed assuming the occurrence of irradiation feedback. They have been shown to undergo cyclic mass transfer during the epoch at which they attain donor masses and orbital periods corresponding to redbacks, and stay in quasi-Roche lobe overflow conditions with {it high} filling factors. We show that, if irradiation feedback occurs and radio ejection inhibits further accretion onto the neutron star after the first mass transfer cycle, the redback systems feature {it high} filling factors. We suggest that the filling factor should be considered as a useful tool for discriminating among those redback formation mechanisms. We compare theoretical results with available observations, and conclude that observations tend to favour models with high filling factors.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا