ﻻ يوجد ملخص باللغة العربية
We analyse the evolution of close binary systems containing a neutron star that lead to the formation of redback pulsars. Recently there has been some debate on the origin of such systems and the formation mechanism of redbacks may still be considered as an open problem. We show that the operation of a strong evaporation mechanism, starting from the moment when the donor star becomes fully convective (or alternatively since the formation of the neutron star by accretion induced collapse), produces systems with donor masses and orbital periods in the range corresponding to redbacks with donors appreciably smaller than their Roche lobes, i.e., they have low filling factors (lower than $0.75$). Models of redback pulsars can be constructed assuming the occurrence of irradiation feedback. They have been shown to undergo cyclic mass transfer during the epoch at which they attain donor masses and orbital periods corresponding to redbacks, and stay in quasi-Roche lobe overflow conditions with {it high} filling factors. We show that, if irradiation feedback occurs and radio ejection inhibits further accretion onto the neutron star after the first mass transfer cycle, the redback systems feature {it high} filling factors. We suggest that the filling factor should be considered as a useful tool for discriminating among those redback formation mechanisms. We compare theoretical results with available observations, and conclude that observations tend to favour models with high filling factors.
We study the evolution of close binary systems composed of a normal, intermediate mass star and a neutron star considering a chemical composition typical of that present in globular clusters (Z = 0.001). We look for similarities and differences with
Compact binary millisecond pulsars with main-sequence donors, often referred to as redbacks, constitute the long-sought link between low-mass X-ray binaries and millisecond radio pulsars, and offer a unique probe of the interaction between pulsar win
PSR J2129-0429 is a redback eclipsing millisecond pulsar binary with an unusually long 15.2 hour orbit. It was discovered by the Green Bank Telescope in a targeted search of unidentified Fermi gamma-ray sources. The pulsar companion is optically brig
PSR,J1723$-$2837 is a redback millisecond pulsar (MSP) with a low-mass companion in a 14.8,h orbit. The systems properties closely resemble those of transitional MSPs that alternate between spin-down and accretion-powered states. In this paper we rep
Millisecond pulsars (MSPs) are generally believed to be old neutron stars (NSs), formed via type Ib/c core-collapse supernovae (SNe), which have been spun up to high rotation rates via accretion from a companion star in a low-mass X-ray binary (LMXB)