ﻻ يوجد ملخص باللغة العربية
The structural arrest of a polymeric suspension might be driven by an increase of the cross--linker concentration, that drives the gel transition, as well as by an increase of the polymer density, that induces a glass transition. These dynamical continuous (gel) and discontinuous (glass) transitions might interfere, since the glass transition might occur within the gel phase, and the gel transition might be induced in a polymer suspension with glassy features. Here we study the interplay of these transitions by investigating via event--driven molecular dynamics simulation the relaxation dynamics of a polymeric suspension as a function of the cross--linker concentration and the monomer volume fraction. We show that the slow dynamics within the gel phase is characterized by a long sub-diffusive regime, which is due both to the crowding as well as to the presence of a percolating cluster. In this regime, the transition of structural arrest is found to occur either along the gel or along the glass line, depending on the length scale at which the dynamics is probed. Where the two line meet there is no apparent sign of higher order dynamical singularity. Logarithmic behavior typical of $A_{3}$ singularity appear inside the gel phase along the glass transition line. These findings seem to be related to the results of the mode coupling theory for the $F_{13}$ schematic model.
We investigate the heterogeneous dynamics in a model, where chemical gelation and glass transition interplay, focusing on the dynamical susceptibility. Two independent mechanisms give raise to the correlations, which are manifested in the dynamical s
It has been shown recently that predictions from Mode-Coupling Theory for the glass transition of hard-spheres become increasingly bad when dimensionality increases, whereas replica theory predicts a correct scaling. Nevertheless if one focuses on th
We revisit the universal behavior of crystalline membranes at and below the crumpling transition, which pertains to the mechanical properties of important soft and hard matter materials, such as the cytoskeleton of red blood cells or graphene. Specif
We investigate the generalized p-spin models that contain arbitrary diagonal operators U with no reflection symmetry. We derive general equations that give an opportunity to uncover the behavior of the system near the glass transition at different (c
Understanding the physics of glass formation remains one of the major unsolved challenges of condensed matter science. As a material solidifies into a glass, it exhibits a spectacular slowdown of the dynamics upon cooling or compression, but at the s