ﻻ يوجد ملخص باللغة العربية
Current Higgs data at the Large Hadron Collider is compatible with a SM signal at the 2$sigma$ level, but the central value of the signal strength in the diphoton channel is enhanced with respect to the SM expectation. If the enhancement resides in the diphoton partial decay width, the data could be accommodated in the Minimally Supersymmetric Standard Model (MSSM) with highly mixed light staus. We revisit the issue of vacuum instability induced by large mixing in the stau sector, including effects of a radiatively-corrected tau Yukawa coupling. Further, we emphasize the importance of taking into account the $tanbeta$ dependence in the stability bound. While the metastability of the Universe constrains the possible enhancement in the Higgs to diphoton decay width in the light stau scenario, an increase of the order of 50% can be achieved in the region of large $tanbeta$. Larger enhancements may be obtained, but would require values of $tanbeta$ associated with non-perturbative values of the tau Yukawa coupling at scales below the GUT scale, thereby implying the presence of new physics beyond the MSSM.
The search for the production of weakly-interacting SUSY particles at the LHC is crucial for testing supersymmetry in relation to dark matter. Decays of neutralinos into Higgs bosons occur over some significant part of the SUSY parameter space and re
The analysis of the Higgs search results at LEP showed that a part of the MSSM parameter space with non-zero complex phases could not be excluded, where the lightest neutral Higgs boson, h_1, has a mass of only about 45 GeV and the second lightest ne
In the MSSM with complex parameters loop corrections to the decays $H^+ to t bar{b}$ and $H^- to bar{t} b$ with $t to b W$ and $W to l u$ lead to CP-violating asymmetries: a decay rate asymmetry, a forward-backward asymmetry and an energy asymmetry.
Precision measurements of the Higgs boson properties at the LHC provide relevant constraints on possible weak-scale extensions of the Standard Model (SM). In the context of the Minimal Supersymmetric Standard Model (MSSM) these constraints seem to su
We consider the introduction of a complex scalar field carrying a global lepton number charge to the Standard Model and the Higgs inflation framework. The conditions are investigated under which this model can simultaneously ensure Higgs vacuum stabi