ﻻ يوجد ملخص باللغة العربية
Recently, the impacts of spatiotemporal heterogeneities of human activities on spreading dynamics have attracted extensive attention. In this paper, to study heterogeneous response times on information spreading, we focus on the susceptible-infected spreading dynamics with adjustable power-law response time distribution based on uncorrelated scale-free networks. We find that the stronger the heterogeneity of response times is, the faster the information spreading is in the early and middle stages. Following a given heterogeneity, the procedure of reducing the correlation between the response times and degrees of individuals can also accelerate the spreading dynamics in the early and middle stages. However, the dynamics in the late stage is slightly more complicated, and there is an optimal value of the full prevalence time changing with the heterogeneity of response times and the response time-degree correlation, respectively. The optimal phenomena results from the efficient allocation of heterogeneous response times.
An important problem of reconstruction of diffusion network and transmission probabilities from the data has attracted a considerable attention in the past several years. A number of recent papers introduced efficient algorithms for the estimation of
Spread of information in crowd is analysed in terms of directed percolation in two-dimensional spatial network. We investigate the case when the information transmitted can be incomplete or damaged. The results indicate that for small or moderate pro
We study a multi-type SIR epidemic process among a heterogeneous population that interacts through a network. When we base social contact on a random graph with given vertex degrees, we give limit theorems on the fraction of infected individuals. For
We have two main aims in this paper. First we use theories of disease spreading on networks to look at the COVID-19 epidemic on the basis of individual contacts -- these give rise to predictions which are often rather different from the homogeneous m
Non-orthogonal multiple access (NOMA) has attracted much recent attention owing to its capability for improving the system spectral efficiency in wireless communications. Deploying NOMA in heterogeneous network can satisfy users explosive data traffi