ترغب بنشر مسار تعليمي؟ اضغط هنا

Attaining sub-classical metrology in lossy systems with entangled coherent states

134   0   0.0 ( 0 )
 نشر من قبل Paul Knott MPhys BSc
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Quantum mechanics allows entanglement enhanced measurements to be performed, but loss remains an obstacle in constructing realistic quantum metrology schemes. However, recent work has revealed that entangled coherent states (ECSs) have the potential to perform robust sub-classical measurements [J. Joo et. al., Phys. Rev. Lett. 107, 83601 (2011)]. Up to now no read out scheme has been devised which exploits this robust nature of ECSs, but we present here an experimentally accessible method of achieving precision close to the theoretical bound, even with loss. We show substantial improvements over unentangled classical states and highly-entangled NOON states for a wide range of loss values, elevating quantum metrology to a realizable technology in the near future.



قيم البحث

اقرأ أيضاً

We identify and discuss nonlinear phase noise arising in Kerr self-phase modulation of a coherent light pulse propagating through an attenuating medium with third-order nonlinearity in a dispersion-free setting. This phenomenon, accompanying the stan dard unitary Kerr transformation of the optical field, is described with high accuracy as Gaussian phase diffusion with parameters given by closed expressions in terms of the system properties. We show that the irreversibility of the nonlinear phase noise ultimately limits the ability to transmit classical information in the phase variable over a lossy single-mode bosonic channel with Kerr-type nonlinearity. Our model can be also used to estimate the amount of squeezing attainable through self- phase modulation in a Kerr medium with distributed attenuation.
We propose a classical emulation methodology to emulate quantum phenomena arising from any non-classical quantum state using only a finite set of coherent states or their statistical mixtures. This allows us to successfully reproduce well-known quant um effects using resources that can be much more feasibly generated in the laboratory. We present a simple procedure to experimentally carry out quantum-state emulation with coherent states that also applies to any general set of classical states that are easier to generate, and demonstrate its capabilities in observing the Hong-Ou-Mandel effect, violating Bell inequalities and witnessing quantum non-classicality.
Probabilistic amplification through photon addition, at the output of an Mach-Zehnder interferometer is discussed for a coherent input state. When a metric of signal to noise ratio is considered, nondeterministic, noiseless amplification of a coheren t state shows improvement over a standard coherent state, for the general addition of $m$ photons. The efficiency of realizable implementation of photon addition is also considered and shows how the collected statistics of a post selected state, depend on this efficiency. We also consider the effects of photon loss and inefficient detectors.
Entangled coherent states are shown to emerge, with high fidelity, when mixing coherent and squeezed vacuum states of light on a beam-splitter. These maximally entangled states, where photons bunch at the exit of a beamsplitter, are measured experime ntally by Fock-state projections. Entanglement is examined theoretically using a Bell-type nonlocality test and compared with ideal entangled coherent states. We experimentally show nearly perfect similarity with entangled coherent states for an optimal ratio of coherent and squeezed vacuum light. In our scheme, entangled coherent states are generated deterministically with small amplitudes, which could be beneficial, for example, in deterministic distribution of entanglement over long distances.
We propose a class of path-entangled photon Fock states for robust quantum optical metrology, imaging, and sensing in the presence of loss. We model propagation loss with beam-splitters and derive a reduced density matrix formalism from which we exam ine how photon loss affects coherence. It is shown that particular entangled number states, which contain a special superposition of photons in both arms of a Mach-Zehnder interferometer, are resilient to environmental decoherence. We demonstrate an order of magnitude greater visibility with loss, than possible with N00N states. We also show that the effectiveness of a detection scheme is related to super-resolution visibility.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا