ﻻ يوجد ملخص باللغة العربية
We propose a class of path-entangled photon Fock states for robust quantum optical metrology, imaging, and sensing in the presence of loss. We model propagation loss with beam-splitters and derive a reduced density matrix formalism from which we examine how photon loss affects coherence. It is shown that particular entangled number states, which contain a special superposition of photons in both arms of a Mach-Zehnder interferometer, are resilient to environmental decoherence. We demonstrate an order of magnitude greater visibility with loss, than possible with N00N states. We also show that the effectiveness of a detection scheme is related to super-resolution visibility.
Over the past 20 years, bright sources of entangled photons have led to a renaissance in quantum optical interferometry. Optical interferometry has been used to test the foundations of quantum mechanics and implement some of the novel ideas associate
To acquire the best path-entangled photon Fock states for robust quantum optical metrology with parity detection, we calculate phase information from a lossy interferometer by using twin entangled Fock states. We show that (a) when loss is less than
We study how useful random states are for quantum metrology, i.e., surpass the classical limits imposed on precision in the canonical phase estimation scenario. First, we prove that random pure states drawn from the Hilbert space of distinguishable p
It has been proposed and demonstrated that path-entangled Fock states (PEFSs) are robust against photon loss over NOON states [S. D. Huver emph{et al.}, Phys. Rev. A textbf{78}, 063828 (2008)]. However, the demonstration was based on a measurement sc
We develop general tools to characterise and efficiently compute relevant observables of multimode $N$-photon states generated in non-linear decays in one-dimensional waveguides. We then consider optical interferometry in a Mach-Zender interferometer