ﻻ يوجد ملخص باللغة العربية
Using a modified version of jeu de taquin, Novelli, Pak and Stoyanovskii gave a bijective proof of the hook-length formula for counting standard Young tableaux of fixed shape. In this paper we consider a natural extension of jeu de taquin to arbitrary posets. Given a poset P, jeu de taquin defines a map from the set of bijective labelings of the poset elements with ${1,2,...,|P|}$ to the set of linear extensions of the poset. One question of particular interest is for which posets this map yields each linear extension equally often. We analyze the double-tailed diamond poset $D_{m,n}$ and show that uniform distribution is obtained if and only if $D_{m,n}$ is d-complete. Furthermore, we observe that the extended hook-length formula for counting linear extensions on d-complete posets provides a combinatorial answer to a seemingly unrelated question, namely: Given a uniformly random standard Young tableau of fixed shape, what is the expected value of the left-most entry in the second row?
We give a necessary and sufficient condition for a $P_4$-free graph to be a cograph. This allows us to obtain a simple proof of the fact that finite $P_4$-free graphs are finite cographs. We also prove that chain complete posets whose comparability graph is a cograph are series-parallel.
Motivated by generalizing Khovanovs categorification of the Jones polynomial, we study functors $F$ from thin posets $P$ to abelian categories $mathcal{A}$. Such functors $F$ produce cohomology theories $H^*(P,mathcal{A},F)$. We find that CW posets,
We discuss a possible characterization, by means of forbidden configurations, of posets which are embeddable in a product of finitely many scattered chains.
In this paper, we show that, for all $ngeq 5$, the maximum number of $2$-chains in a butterfly-free family in the $n$-dimensional Boolean lattice is $leftlceilfrac{n}{2}rightrceilbinom{n}{lfloor n/2rfloor}$. In addition, for the height-2 poset $K_{
For any graded poset $P$, we define a new graded poset, $mathcal E(P)$, whose elements are the edges in the Hasse diagram of P. For any group, $G$, acting on the boolean algebra, $B_n$, we conjecture that $mathcal E(B_n/G)$ is Peck. We prove that the