ﻻ يوجد ملخص باللغة العربية
Consider a formally self-adjoint first order linear differential operator acting on pairs (2-columns) of complex-valued scalar fields over a 4-manifold without boundary. We examine the geometric content of such an operator and show that it implicitly contains a Lorentzian metric, Pauli matrices, connection coefficients for spinor fields and an electromagnetic covector potential. This observation allows us to give a simple representation of the massive Dirac equation as a system of four scalar equations involving an arbitrary two-by-two matrix operator as above and its adjugate. The point of the paper is that in order to write down the Dirac equation in the physically meaningful 4-dimensional hyperbolic setting one does not need any geometric constructs. All the geometry required is contained in a single analytic object - an abstract formally self-adjoint first order linear differential operator acting on pairs of complex-valued scalar fields.
We study the (massless) Dirac operator on a 3-sphere equipped with Riemannian metric. For the standard metric the spectrum is known. In particular, the eigenvalues closest to zero are the two double eigenvalues +3/2 and -3/2. Our aim is to analyse th
We prove the global existence of smooth solution to the relativistic string equation in a class of data that is not small. Our solution admits the feature that the right-travelling wave can be large and the left-travelling wave is sufficiently small,
We consider the initial value problem for the spherically symmetric, focusing cubic wave equation in three spatial dimensions. We give numerical and analytical evidence for the existence of a universal attractor which encompasses both global and blow
We consider the hyperboloidal initial value problem for the cubic focusing wave equation. Without symmetry assumptions, we prove the existence of a co-dimension 4 Lipschitz manifold of initial data that lead to global solutions in forward time which do not scatter to free waves.
We investigate topological T-duality in the framework of non-abelian gerbes and higher gauge groups. We show that this framework admits the gluing of locally defined T-duals, in situations where no globally defined (geometric) T-duals exists. The glu