ترغب بنشر مسار تعليمي؟ اضغط هنا

Universality of global dynamics for the cubic wave equation

176   0   0.0 ( 0 )
 نشر من قبل Anil Zenginoglu C
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We consider the initial value problem for the spherically symmetric, focusing cubic wave equation in three spatial dimensions. We give numerical and analytical evidence for the existence of a universal attractor which encompasses both global and blowup solutions. As a byproduct we get an explicit description of the critical behavior at the threshold of blowup.



قيم البحث

اقرأ أيضاً

We consider the hyperboloidal initial value problem for the cubic focusing wave equation. Without symmetry assumptions, we prove the existence of a co-dimension 4 Lipschitz manifold of initial data that lead to global solutions in forward time which do not scatter to free waves.
We consider the wave equation with a focusing cubic nonlinearity in higher odd space dimensions without symmetry restrictions on the data. We prove that there exists an open set of initial data such that the corresponding solution exists in a backwar d light-cone and approaches the ODE blowup profile.
We consider a coupled Wave-Klein-Gordon system in 3D, and prove global regularity and modified scattering for small and smooth initial data with suitable decay at infinity. This system was derived by Wang and LeFloch-Ma as a simplified model for the global nonlinear stability of the Minkowski space-time for self-gravitating massive fields.
75 - Xu Yuan 2021
Consider the focusing 4D cubic wave equation [ partial_{tt}u-Delta u-u^{3}=0,quad mbox{on} (t,x)in [0,infty)times mathbb{R}^{4}.] The main result states the existence in energy space $dot{H}^{1}times L^{2}$ of multi-solitary waves where each travelin g wave is generated by Lorentz transform from a specific excited state, with different but collinear Lorentz speeds. The specific excited state is deduced from the non-degenerate sign-changing state constructed in Musso-Wei [34]. The proof is inspired by the techniques developed for the 5D energy-critical wave equation and the nonlinear Klein-Gordon equation in a similar context by Martel-Merle [30] and C^ote-Martel [6]. The main difficulty originates from the strong interactions between solutions in the 4D case compared to other dispersive and wave-type models. To overcome the difficulty, a sharp understanding of the asymptotic behavior of the excited states involved and of the kernel of their linearized operator is needed.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا