ترغب بنشر مسار تعليمي؟ اضغط هنا

EChO Payload electronics architecture and SW design

96   0   0.0 ( 0 )
 نشر من قبل Mauro Focardi
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

EChO is a three-modules (VNIR, SWIR, MWIR), highly integrated spectrometer, covering the wavelength range from 0.55 $mu$m, to 11.0 $mu$m. The baseline design includes the goal wavelength extension to 0.4 $mu$m while an optional LWIR module extends the range to the goal wavelength of 16.0 $mu$m. An Instrument Control Unit (ICU) is foreseen as the main electronic subsystem interfacing the spacecraft and collecting data from all the payload spectrometers modules. ICU is in charge of two main tasks: the overall payload control (Instrument Control Function) and the housekeepings and scientific data digital processing (Data Processing Function), including the lossless compression prior to store the science data to the Solid State Mass Memory of the Spacecraft. These two main tasks are accomplished thanks to the Payload On Board Software (P-OBSW) running on the ICU CPUs.



قيم البحث

اقرأ أيضاً

SOXS (Son Of X-Shooter) is a unique spectroscopic facility that will operate at the ESO New Technology Telescope (NTT) in La Silla from 2020 onward. The spectrograph will be able to cover simultaneously the UV-VIS and NIR bands exploiting two differe nt arms and a Common Path feeding system. We present the design of the SOXS instrument control electronics. The electronics controls all the movements, alarms, cabinet temperatures, and electric interlocks of the instrument. We describe the main design concept. We decided to follow the ESO electronic design guidelines to minimize project time and risks and to simplify system maintenance. The design envisages Commercial Off-The-Shelf (COTS) industrial components (e.g. Beckhoff PLC and EtherCAT fieldbus modules) to obtain a modular design and to increase the overall reliability and maintainability. Preassembled industrial motorized stages are adopted allowing for high precision assembly standards and a high reliability. The electronics is kept off-board whenever possible to reduce thermal issues and instrument weight and to increase the accessibility for maintenance purpose. The instrument project went through the Preliminary Design Review in 2017 and is currently in Final Design Phase (with FDR in July 2018). This paper outlines the status of the work and is part of a series of contributions describing the SOXS design and properties after the instrument Preliminary Design Review.
NISP, a multifaceted near-infrared instrument for the upcoming 2.5m IR telescope at MIRO Gurushikhar, Mount Abu, Rajasthan, India is being developed at PRL, Ahmedabad. NISP will have wide (FOV = 10 x 10) field imaging, moderate (R=3000) spectroscopy and imaging polarimetry operating modes. It is designed based on 0.8 to 2.5 micron sensitive, 2048 X 2048 HgCdTe (MCT) array detector from Teledyne. Optical, Mechanical and Electronics subsystems are being designed and developed in-house at PRL. HAWAII-2RG (H2RG) detector will be mounted along with controlling SIDECAR ASIC inside LN2 filled cryogenic cooled Dewar. FPGA based controller for H2RG and ASIC will be mounted outside the Dewar at room temperature. Smart stepper motors will facilitate motion of filter wheels and optical components to realize different operating modes. Detector and ASIC temperatures are servo controlled using Lakeshores Temperature Controller (TC) 336. Also, several cryogenic temperatures will be monitored by TC for health checking of the instrument. Detector, Motion and Temperature controllers onboard telescope will be interfaced to USB Hub and fiber-optic trans-receiver. Remote Host computer interface to remote end trans-receiver will be equipped with in-house developed GUI software to control all functionalities of NISP. Design and development aspects of NISP Electronics will be presented in this conference.
The Planet Formation Imager (PFI) Project has formed a Technical Working Group (TWG) to explore possible facility architectures to meet the primary PFI science goal of imaging planet formation in situ in nearby star- forming regions. The goals of bei ng sensitive to dust emission on solar system scales and resolving the Hill-sphere around forming giant planets can best be accomplished through sub-milliarcsecond imaging in the thermal infrared. Exploiting the 8-13 micron atmospheric window, a ground-based long-baseline interferometer with approximately 20 apertures including 10km baselines will have the necessary resolution to image structure down 0.1 milliarcseconds (0.014 AU) for T Tauri disks in Taurus. Even with large telescopes, this array will not have the sensitivity to directly track fringes in the mid-infrared for our prime targets and a fringe tracking system will be necessary in the near-infrared. While a heterodyne architecture using modern mid-IR laser comb technology remains a competitive option (especially for the intriguing 24 and 40{mu}m atmospheric windows), the prioritization of 3-5{mu}m observations of CO/H2O vibrotational levels by the PFI-Science Working Group (SWG) pushes the TWG to require vacuum pipe beam transport with potentially cooled optics. We present here a preliminary study of simulated L- and N-band PFI observations of a realistic 4-planet disk simulation, finding 21x2.5m PFI can easily detect the accreting protoplanets in both L and N-band but can see non-accreting planets only in L band. (abridged -- see PDF for full abstract)
PICARD is a scientific space mission dedicated to the study of the solar variability origin. A French micro-satellite will carry an imaging telescope for measuring the solar diameter, limb shape and solar oscillations, and two radiometers for measuri ng the total solar irradiance and the irradiance in five spectral domains, from ultraviolet to infrared. The mission is planed to be launched in 2009 for a 3-year duration. This article presents the PICARD Payload Data Centre, which role is to collect, process and distribute the PICARD data. The Payload Data Centre is a joint project between laboratories, space agency and industries. The Belgian scientific policy office funds the industrial development and future operations under the European Space Agency program. The development is achieved by the SPACEBEL Company. The Belgian operation centre is in charge of operating the PICARD Payload Data Centre. The French space agency leads the development in partnership with the French scientific research centre, which is responsible for providing all the scientific algorithms. The architecture of the PICARD Payload Data Centre (software and hardware) is presented. The software system is based on a Service Oriented Architecture. The host structure is made up of the basic functions such as data management, task scheduling and system supervision including a graphical interface used by the operator to interact with the system. The other functions are mission-specific: data exchange (acquisition, distribution), data processing (scientific and non-scientific processing) and managing the payload (programming, monitoring). The PICARD Payload Data Centre is planned to be operated for 5 years. All the data will be stored into a specific data centre after this period.
Microwave Kinetic Inductance Detectors (MKID) are a promising solution for spaceborne mm-wave astronomy. To optimize their design and make them insensitive to the ballistic phonons created by cosmic-ray interactions in the substrate, the phonon propa gation in silicon must be studied. A dedicated fast readout electronics, using channelized Digital Down Conversion for monitoring up to 12 MKIDs over a 100MHz bandwidth was developed. Thanks to the fast ADC sampling and steep digital filtering, In-phase and Quadrature samples, having a high dynamic range, are provided at ~2 Msps. This paper describes the technical solution chosen and the results obtained.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا