ترغب بنشر مسار تعليمي؟ اضغط هنا

The PICARD Payload Data Centre

92   0   0.0 ( 0 )
 نشر من قبل Massinissa Hadjara
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

PICARD is a scientific space mission dedicated to the study of the solar variability origin. A French micro-satellite will carry an imaging telescope for measuring the solar diameter, limb shape and solar oscillations, and two radiometers for measuring the total solar irradiance and the irradiance in five spectral domains, from ultraviolet to infrared. The mission is planed to be launched in 2009 for a 3-year duration. This article presents the PICARD Payload Data Centre, which role is to collect, process and distribute the PICARD data. The Payload Data Centre is a joint project between laboratories, space agency and industries. The Belgian scientific policy office funds the industrial development and future operations under the European Space Agency program. The development is achieved by the SPACEBEL Company. The Belgian operation centre is in charge of operating the PICARD Payload Data Centre. The French space agency leads the development in partnership with the French scientific research centre, which is responsible for providing all the scientific algorithms. The architecture of the PICARD Payload Data Centre (software and hardware) is presented. The software system is based on a Service Oriented Architecture. The host structure is made up of the basic functions such as data management, task scheduling and system supervision including a graphical interface used by the operator to interact with the system. The other functions are mission-specific: data exchange (acquisition, distribution), data processing (scientific and non-scientific processing) and managing the payload (programming, monitoring). The PICARD Payload Data Centre is planned to be operated for 5 years. All the data will be stored into a specific data centre after this period.



قيم البحث

اقرأ أيضاً

129 - T. Corbard 2014
Developed at the Observatoire de la C^ote dAzur (OCA) within the framework of the PICARD space mission (Thuillier et al., 2006) and with support from the french spatial agency (CNES), MISOLFA (Moniteur dImages Solaires Franco-Algerien) is a new gener ation of daytime turbulence monitor. Its objective is to measure both the spatial and temporal turbulence parameters in order to quantify their effects on the solar diameter measurements that will be made from ground using the qualification model of the SODISM (SOlar Diameter Imager and Surface Mapper) instrument onboard PICARD. The comparison of simultaneous images from ground and space should allow us, with the help of the solar monitor, to find the best procedure possible to measure solar diameter variations from ground on the long term. MISOLFA is now installed at the Calern facility of OCA and PICARD is scheduled to be launched in 2010. We present here the principles of the instrument and the first results obtained on the characteristics of the turbulence observed at Calern observatory using this monitor while waiting for the launch of the space mission.
302 - A. Haungs , J. Bluemer , B. Fuchs 2015
KCDC, the KASCADE Cosmic-ray Data Centre, is a web portal, where data of astroparticle physics experiments will be made available for the interested public. The KASCADE experiment, financed by public money, was a large-area detector for the measureme nt of high-energy cosmic rays via the detection of air showers. KASCADE and its extension KASCADE-Grande stopped finally the active data acquisition of all its components including the radio EAS experiment LOPES end of 2012 after more than 20 years of data taking. In a first release, with KCDC we provide to the public the measured and reconstructed parameters of more than 160 million air showers. In addition, KCDC provides the conceptional design, how the data can be treated and processed so that they are also usable outside the community of experts in the research field. Detailed educational examples make a use also possible for high-school students and early stage researchers.
121 - M. Meftah 2013
The Solar Diameter Imager and Surface Mapper (SODISM) on board the PICARD space mission provides wide-field images of the photosphere and chromosphere of the Sun in five narrow pass bands (centered at 215.0, 393.37, 535.7, 607.1, and 782.2 nm). PICAR D is a space mission, which was successfully launched on 15 June 2010 into a Sun synchronous dawn-dusk orbit. It represents a European asset aiming at collecting solar observations that can serve to estimate some of the inputs to Earth climate models. The scientific payload consists of the SODISM imager and of two radiometers, SOVAP (SOlar VAriability PICARD) and PREMOS (PREcision MOnitor Sensor), which carry out measurements that allow estimating the Total Solar Irradiance (TSI) and the Solar Spectral Irradiance (SSI) from the middle ultraviolet to the red. The SODISM telescope monitors solar activity continuously. It thus produces images that can also feed SSI reconstruction models. Further, the objectives of SODISM encompass the probing of the interior of the Sun via helioseismic analysis of observations in intensity (on the solar disc and at the limb), and via astrometric investigations at the limb. The latter addresses especially the spectral dependence of the radial limb shape, and the temporal evolution of the solar diameter and asphericity. After a brief review of its original science objectives, this paper presents the detailed design of the SODISM instrument, its expected performance, and the scheme of its flight operations. Some observations with SODISM are presented and discussed.
331 - A.Haungs , D.Kang , S.Schoo 2018
The `KASCADE Cosmic ray Data Centre is a web portal (url{https://kcdc.ikp.kit.edu}), where the data of the astroparticle physics experiment KASCADE-Grande are made available for the interested public. The KASCADE experiment was a large-area detector for the measurement of high-energy cosmic rays via the detection of extensive air showers. The multi-detector installations KASCADE and its extension KASCADE-Grande stopped the active data acquisition in 2013 of all its components end of 2012 after more than 20 years of data taking. In several updates since our first release in 2013 with KCDC we provide the public measured and reconstructed parameters of more than 433 million air showers. In addition, KCDC provides meta data information and documentation to enable a user outside the community of experts to perform their own data analysis. Simulation data from three different high energy interaction models have been made available as well as a compilation of measured and published spectra from various experiments. In addition, detailed educational examples shall encourage high-school students and early stage researchers to learn about astroparticle physics, cosmic radiation as well as the handling of Big Data and about the sustainable and public provision of scientific data.
156 - A. Mora , A. Abreu , N. Cheek 2014
This document describes the uplink commanding system for the ESA Gaia mission. The need for commanding, the main actors, data flow and systems involved are described. The system architecture is explained in detail, including the different levels of c onfiguration control, software systems and data models. A particular subsystem, the automatic interpreter of human-readable onboard activity templates, is also carefully described. Many lessons have been learned during the commissioning and are also reported, because they could be useful for future space survey missions.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا