ﻻ يوجد ملخص باللغة العربية
In the QCD evolution of transverse momentum dependent parton distribution and fragmentation functions, the Collins-Soper evolution kernel includes both a perturbative short-distance contribution as well as a large-distance non-perturbative, but strongly universal, contribution. In the past, global fits, based mainly on larger $Q$ Drell-Yan-like processes, have found substantial contributions from non-perturbative regions in the Collins-Soper evolution kernel. In this article, we investigate semi-inclusive deep inelastic scattering measurements in the region of relatively small $Q$, of the order of a few GeV, where sensitivity to non-perturbative transverse momentum dependence may become more important or even dominate the evolution. Using recently available deep inelastic scattering data from the COMPASS experiment, we provide estimates of the regions of coordinate space that dominate in TMD processes when the hard scale is of the order of only a few GeV. We find that distance scales that are much larger than those commonly probed in large $Q$ measurements become important, suggesting that the details of non-perturbative effects in TMD evolution are especially significant in the region of intermediate $Q$. We highlight the strongly universal nature of the non-perturbative component of evolution, and its potential to be tightly constrained by fits from a wide variety of observables that include both large and moderate $Q$. On this basis, we recommend detailed treatments of the non-perturbative component of the Collins-Soper evolution kernel for future TMD studies.
It is shown that in semi-inclusive deep inelastic scattering (DIS) of electrons off a complex nucleus A, the detection, in coincidence with the scattered electron, of a nucleus (A-1) in the ground state, as well as of a nucleon and a nucleus (A-2), a
We construct a language for identifying kinematical regions of transversely differential semi-inclusive deep inelastic scattering cross sections with particular underlying partonic pictures, especially in regions of moderate to low $Q$ where sensitiv
We study the single-transverse spin asymmetry for open charm production in the semi-inclusive lepton-hadron deep inelastic scattering. We calculate the asymmetry in terms of the QCD collinear factorization approach for $D$ mesons at high enough $P_{h
Different kinematical regimes of semi-inclusive deeply inelastic scattering (SIDIS) processes correspond to different underlying partonic pictures, and it is important to understand the transition between them. This is particularly the case when ther
We summarize some of our recent work on non-perturbative transverse momentum dependent (TMD) evolution, emphasizing aspects that are necessary for dealing with moderately low scale processes like semi-inclusive deep inelastic scattering.