ترغب بنشر مسار تعليمي؟ اضغط هنا

Single transverse-spin asymmetry for $D$-meson production in semi-inclusive deep inelastic scattering

151   0   0.0 ( 0 )
 نشر من قبل Zhong-Bo Kang
 تاريخ النشر 2008
  مجال البحث
والبحث باللغة English
 تأليف Zhong-Bo Kang




اسأل ChatGPT حول البحث

We study the single-transverse spin asymmetry for open charm production in the semi-inclusive lepton-hadron deep inelastic scattering. We calculate the asymmetry in terms of the QCD collinear factorization approach for $D$ mesons at high enough $P_{hperp}$, and find that the asymmetry is proportional to the twist-three tri-gluon correlation function in the proton. With a simple model for the tri-gluon correlation function, we estimate the asymmetry for both COMPASS and eRHIC kinematics, and discuss the possibilities of extracting the tri-gluon correlation function in these experiments.



قيم البحث

اقرأ أيضاً

First measurements of azimuthal asymmetries in hadron-pair production in deep-inelastic scattering of muons on transversely polarised ^6LiD (deuteron) and NH_3 (proton) targets are presented. The data were taken in the years 2002-2004 and 2007 with t he COMPASS spectrometer using a muon beam of 160 GeV/c at the CERN SPS. The asymmetries provide access to the transversity distribution functions, without involving the Collins effect as in single hadron production. The sizeable asymmetries measured on the NH_ target indicate non-vanishing u-quark transversity and two-hadron interference fragmentation functions. The small asymmetries measured on the ^6LiD target can be interpreted as indication for a cancellation of u- and d-quark transversities.
It is shown that in semi-inclusive deep inelastic scattering (DIS) of electrons off a complex nucleus A, the detection, in coincidence with the scattered electron, of a nucleus (A-1) in the ground state, as well as of a nucleon and a nucleus (A-2), a lso in the ground state, may provide unique information on several long standing problems, such as : i) the nature and the relevance of the final state interaction in DIS; ii) validity of the spectator mechanism in DIS; iii) the medium induced modifications of the nucleon structure function; iv) the origin of the EMC effect.
Motivated by recently observed tension between $Oleft(alpha_s^2right)$ calculations of very large transverse momentum dependence in both semi-inclusive deep inelastic scattering and Drell-Yan scattering, we repeat the details of the calculation throu gh $Oleft(alpha_s^2right)$ transversely differential cross section. The results confirm earlier calculations, and provide further support to the observation that tension exists with current parton distribution and fragmentation functions.
159 - Jun She , Yajun Mao , Bo-Qiang Ma 2008
We analyze the left-right asymmetry of pion production in semi-inclusive deep inelastic scattering (SIDIS) process of unpolarized charged lepton on transversely polarized nucleon target. Unlike available treatments, in which some specific weighting f unctions are multiplied to separate theoretically motivated quantities, we do not introduce any weighting function following the analyzing method by the E704 experiment. The advantage is that this basic observable is free of any theoretical bias, although we can perform the calculation under the current theoretical framework. We present numerical calculations at both HERMES kinematics for the proton target and JLab kinematics for the neutron target. We find that with the current theoretical understanding, Sivers effect plays a key role in our analysis.
99 - H. Gao , L. Gamberg , J.-P. Chen 2010
Jefferson Lab (JLab) 12 GeV energy upgrade provides a golden opportunity to perform precision studies of the transverse spin and transverse-momentum-dependent structure in the valence quark region for both the proton and the neutron. In this paper, w e focus our discussion on a recently approved experiment on the neutron as an example of the precision studies planned at JLab. The new experiment will perform precision measurements of target Single Spin Asymmetries (SSA) from semi-inclusive electro-production of charged pions from a 40-cm long transversely polarized $^3$He target in Deep-Inelastic-Scattering kinematics using 11 and 8.8 GeV electron beams. This new coincidence experiment in Hall A will employ a newly proposed solenoid spectrometer (SoLID). The large acceptance spectrometer and the high polarized luminosity will provide precise 4-D ($x$, $z$, $P_T$ and $Q^2$) data on the Collins, Sivers, and pretzelocity asymmetries for the neutron through the azimuthal angular dependence. The full 2$pi$ azimuthal angular coverage in the lab is essential in controlling the systematic uncertainties. The results from this experiment, when combined with the proton Collins asymmetry measurement and the Collins fragmentation function determined from the e$^+$e$^-$ collision data, will allow for a quark flavor separation in order to achieve a determination of the tensor charge of the d quark to a 10% accuracy. The extracted Sivers and pretzelocity asymmetries will provide important information to understand the correlations between the quark orbital angular momentum and the nucleon spin and between the quark spin and nucleon spin.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا