ﻻ يوجد ملخص باللغة العربية
We use the homotopy Brouwer theory of Handel to define a Poincar{e} index between two orbits for an orientation preserving fixed point free homeomorphism of the plane. Furthermore, we prove that this index is almost additive.
Homotopy Brouwer theory is a tool to study the dynamics of surface homeomorphisms. We introduce and illustrate the main objects of homotopy Brouwer theory, and provide a proof of Handels fixed point theorem. These are the notes of a mini-course held
We study the polynomial entropy of the wandering part of any invertible dynamical system on a compact metric space. As an application we compute the polynomial entropy of Brouwer homeomorphisms (fixed point free orientation preserving homeomorphisms
We study which quadratic forms are representable as the local degree of a map $f : A^n to A^n$ with an isolated zero at $0$, following the work of Kass and Wickelgren who established the connection to the quadratic form of Eisenbud, Khimshiashvili, a
We present a generalization of Brouwers conjectural family of inequalities -- a popular family of inequalities in spectral graph theory bounding the partial sum of the Laplacian eigenvalues of graphs -- for the case of abstract simplicial complexes o
For oriented connected closed manifolds of the same dimension, there is a transitive relation: $M$ dominates $N$, or $M ge N$, if there exists a continuous map of non-zero degree from $M$ onto $N$. Section 1 is a reminder on the notion of degree (Bro