ترغب بنشر مسار تعليمي؟ اضغط هنا

A clear and measurable signature of modified gravity in the galaxy velocity field

30   0   0.0 ( 0 )
 نشر من قبل Wojciech Hellwing
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The velocity field of dark matter and galaxies reflects the continued action of gravity throughout cosmic history. We show that the low-order moments of the pairwise velocity distribution, $v_{12}$, are a powerful diagnostic of the laws of gravity on cosmological scales. In particular, the projected line-of-sight galaxy pairwise velocity dispersion, $sigma_{12}(r)$, is very sensitive to the presence of modified gravity. Using a set of high-resolution N-body simulations we compute the pairwise velocity distribution and its projected line-of-sight dispersion for a class of modified gravity theories: the chameleon fR gravity and Galileon gravity (cubic and quartic). The velocities of dark matter halos with a wide range of masses would exhibit deviations from General Relativity at the $(5-10)sigma$ level. We examine strategies for detecting these deviations in galaxy redshift and peculiar velocity surveys. If detected, this signature would be a smoking gun for modified gravity.

قيم البحث

اقرأ أيضاً

We study the reduced skewness, $S_{3,g}equivbar{xi}_{3,g}/bar{xi}_{2,g}^2$ of galaxy distribution at $z=0.5$ in two families of modfied gravity models: the Hu-Sawicki $f(R)$-gravity and normal-branch of Dvali-Gabadadze-Porrati (nDGP) models. We use a set of mock galaxy catalogues specifally designed to match CMASS spectroscopic galaxy sample. For the first time we investigate the third reduced moment of such galaxy distributions both in the redshift space. Our analysis confirms that the signal previously indicated only for dark matter halo catalogues persists also in realistic mock galaxy samples. This result offers a possibility to extract a potential modified gravity signal in $S_3$ from spectroscopic galaxy data without a need for a very precise and self-consistent RSD models constructed for each and every modified gravity scenario separately. We show that the relative deviations from $Lambda$CDM~ $S_{3,g}$ of various modified gravity models can vary from $7$ down to $sim 2-3%$ effects. Albeit, the effect looks small, we show that for considered models it can foster a $2-3sigma$ falsification. Finally we argue that galaxy sample of a significantly higher number density should provide even stronger constraints by limiting shot-noise effects affecting the $S_{3,g}$ estimates at small comoving separations.
We develop an approach to compute observables beyond the linear regime of dark matter perturbations for general dark energy and modified gravity models. We do so by combining the Effective Field Theory of Dark Energy and Effective Field Theory of Lar ge-Scale Structure approaches. In particular, we parametrize the linear and nonlinear effects of dark energy on dark matter clustering in terms of the Lagrangian terms introduced in a companion paper, focusing on Horndeski theories and assuming the quasi-static approximation. The Euler equation for dark matter is sourced, via the Newtonian potential, by new nonlinear vertices due to modified gravity and, as in the pure dark matter case, by the effects of short-scale physics in the form of the divergence of an effective stress tensor. The effective fluid introduces a counterterm in the solution to the matter continuity and Euler equations, which allows a controlled expansion of clustering statistics on mildly nonlinear scales. We use this setup to compute the one-loop dark-matter power spectrum.
The statistics of dark matter halos is an essential component of understanding the nonlinear evolution in modified gravity cosmology. Based on a series of modified gravity N-body simulations, we investigate the halo mass function, concentration and b ias. We model the impact of modified gravity by a single parameter zeta, which determines the enhancement of particle acceleration with respect to GR, given the identical mass distribution (zeta=1 in GR). We select snapshot redshifts such that the linear matter power spectra of different gravity models are identical, in order to isolate the impact of gravity beyond modifying the linear growth rate. At the baseline redshift corresponding to z_S=1.2 in the standard Lambda CDM, for a 10% deviation from GR(|zeta-1|=0.1), the measured halo mass function can differ by about 5-10%, the halo concentration by about 10-20%, while the halo bias differs significantly less. These results demonstrate that the halo mass function and/or the halo concentration are sensitive to the nature of gravity and may be used to make interesting constraints along this line.
Despite two decades of tremendous experimental and theoretical progress, the riddle of the accelerated expansion of the Universe remains to be solved. On the experimental side, our understanding of the possibilities and limitations of the major dark energy probes has evolved; here we summarize the major probes and their crucial challenges. On the theoretical side, the taxonomy of explanations for the accelerated expansion rate is better understood, providing clear guidance to the relevant observables. We argue that: i) improving statistical precision and systematic control by taking more data, supporting research efforts to address crucial challenges for each probe, using complementary methods, and relying on cross-correlations is well motivated; ii) blinding of analyses is difficult but ever more important; iii) studies of dark energy and modified gravity are related; and iv) it is crucial that R&D for a vibrant dark energy program in the 2030s be started now by supporting studies and technical R&D that will allow embryonic proposals to mature. Understanding dark energy, arguably the biggest unsolved mystery in both fundamental particle physics and cosmology, will remain one of the focal points of cosmology in the forthcoming decade.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا