ﻻ يوجد ملخص باللغة العربية
The role of Fermi arc surface-quasiparticle states in topological metals (where some Fermi surface sheets have non-zero Chern number) is examined. They act as Fermi-level plumbing conduits that transfer quasiparticles among groups of apparently-disconnected Fermi sheets with non-zero Chern numbers to maintain equality of their chemical potentials, which is required by gauge invariance. Fermi arcs have a chiral tangential attachment to the surface projections of sheets of the bulk Fermi Surface: the total Chern number of each projection equals the net chirality of arc-attachments to it. Information from the Fermi arcs is needed to unambiguously determine the quantized part of the anomalous Hall effect that is not determined at the bulk Fermi surface.
Topological Dirac and Weyl semimetals not only host quasiparticles analogous to the elementary fermionic particles in high-energy physics, but also have nontrivial band topology manifested by exotic Fermi arcs on the surface. Recent advances suggest
The nonlinear optical responses from topological semimetals are crucial in both understanding the fundamental properties of quantum materials and designing next-generation light-sensors or solar-cells. However, previous work was focusing on the optic
We theoretically study the topological robustness of the surface physics induced by Weyl Fermi-arc surface states in the presence of short-ranged quenched disorder and surface-bulk hybridization. This is investigated with numerically exact calculatio
In condensed matter systems, chiral topological nodes are robust band crossing points in momentum space that carry nonzero Chern numbers. The chirality is manifested by the presence of surface Fermi arcs connecting the projections of nodes with oppos
Motivated by the famous and pioneering mathematical works by Perelman, Hamilton, and Thurston, we introduce the concept of using modern geometrical mathematical classifications of multi-dimensional manifolds to characterize electronic structures and