ترغب بنشر مسار تعليمي؟ اضغط هنا

Dependence of Dopant Geometry on Na Concentration in $Na_{x}CoO_{2}$

51   0   0.0 ( 0 )
 نشر من قبل Hussein Assadi Dr
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In this work, we investigated the behaviour of Sb dopants in $Na_{x}CoO_{2}$ for Na concentrations of $x = 0.75, 0.875$ and $1.00$ by density functional theory. We chose $Na_{x}CoO_{2}$ with higher Na concentration of $x > 0.75$ because it has excessively higher thermo-power thus it is appealing for practical applications. The rationale for choosing Sb was its exceedingly higher atomic mass than all elements of the host crystal which enable Sb to rattle phonons considerably.

قيم البحث

اقرأ أيضاً

Through comprehensive density functional calculations, the crystallographic, magnetic and electronic properties of $Na_xCoO_2$ ($x$ = 1, 0.875, 0.75, 0.625 and 0.50) were investigated. We found that all Na ions in $NaCoO_2$ and $Na_{0.875}CoO_2$ shar e the basal coordinates with O ions. However, as $x$ decreases, some of Na ions move within the basal plane in order to reduce the in-plane Na$-$Na electrostatic repulsion. Magnetically, there was strong tendency for type A antiferromagnetism in the $Na_{0.75}CoO_2$ system, while all other Na deficient systems had a weaker ferromagnetic tendency. The results on magnetism were in excellent agreement with the experiments.
Doping is considered to be the main method for improving the thermoelectric performance of layered sodium cobaltate (Na$_{1-x}$CoO$_2$). However, in the vast majority of past reports, the equilibrium location of the dopant in the Na$_{1-x}$CoO$_2$s c omplex layered lattice has not been confidently identified. Consequently, a universal strategy for choosing a suitable dopant for enhancing Na$_{1-x}$CoO$_2$s figure of merit is yet to be established. Here, by examining the formation energy of Gd and Yb dopants in Na$_{0.75}$CoO$_2$ and Na$_{0.50}$CoO$_2$, we demonstrate that in an oxygen poor environment, Gd and Yb dopants reside in the Na layer while in an oxygen rich environment these dopants replace a Co in CoO$_2$ layer. When at Na layer, Gd and Yb dopants reduce the carrier concentration via electron-hole recombination, simultaneously increasing the Seebeck coefficient ($S$) and reducing electric conductivity ($sigma$). Na site doping, however, improves the thermoelectric power factor (PF) only in Na$_{0.50}$CoO$_2$. When replacing a Co, these dopants reduce $S$ and PF. The results demonstrate how thermoelectric performance critically depends on the synthesis environment that must be fine-tuned for achieving any thermoelectric enhancement.
The reported diffusion constants for hydrogen in silicon vary over six orders of magnitude. This spread in measured values is caused by the different concentrations of defects in the silicon that has been studied. Hydrogen diffusion is slowed down as it interacts with impurities. By changing the material properties such as the crystallinity, doping type and impurity concentrations, the diffusivity of hydrogen can be changed by several orders of magnitude. In this study the influence of the hydrogen concentration on the temperature dependence of the diffusion in high energy proton implanted silicon is investigated. We show that the Arrhenius parameters, which describe this temperature dependence decrease with increasing hydrogen concentration. We propose a model where the relevant defects that mediate hydrogen diffusion become saturated with hydrogen at high concentrations. When the defects that provide hydrogen with the lowest energy positions in the lattice are saturated, hydrogen resides at energetically less favorable positions and this increases the diffusion of hydrogen through the crystal. Furthermore, we present a survey of different studies on the diffusion of hydrogen. We observed a correlation of the Arrhenius parameters calculated in those studies, leading to a modification of the Arrhenius equation for the diffusion of hydrogen in silicon.
The determining factor of the bulk properties of doped Si is the column rather than the row in the periodic table from which the dopants are drawn. It is unknown whether the basic properties of dopants at surfaces and interfaces, steadily growing in importance as microelectronic devices shrink, are also solely governed by their column of origin. The common light impurity P replaces individual Si atoms and maintains the integrity of the dimer superstructure of the Si(001) surface, but loses its valence electrons to surface states. Here we report that isolated heavy dopants are entirely different: Bi atoms form pairs with Si vacancies, retain their electrons and have highly localized, half-filled orbitals.
A weakening of superconductivity upon substitution of Cu by Zn (0.5~1 %) is observed in a high-T_c cuprate, Ca_{2-x}Na_xCuO2Cl2, near the hole concentration of 1/8 per Cu. The superconducting transition temperature and its volume fraction, estimated by magnetic susceptibility, exhibit a sizable anomaly for x=0.12~0.14, where the slowing down of Cu spin fluctuations below 5 K is demonstrated by muon spin relaxation experiments. These observations are in close resemblance to other typical cuprates including YBa2Cu3O_{7-d}, and Bi2Sr2Ca_{1-x}Y_xCu2O_{8+d}, providing further evidence that Zn-induced stripe correlation is a universal feature of high-T_c cuprate superconductors common to that of La_{2-x}A_{x}CuO4 (A=Ba, Sr).
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا