ﻻ يوجد ملخص باللغة العربية
The determining factor of the bulk properties of doped Si is the column rather than the row in the periodic table from which the dopants are drawn. It is unknown whether the basic properties of dopants at surfaces and interfaces, steadily growing in importance as microelectronic devices shrink, are also solely governed by their column of origin. The common light impurity P replaces individual Si atoms and maintains the integrity of the dimer superstructure of the Si(001) surface, but loses its valence electrons to surface states. Here we report that isolated heavy dopants are entirely different: Bi atoms form pairs with Si vacancies, retain their electrons and have highly localized, half-filled orbitals.
Thin GaP films can be grown on an exact Si(001) substrate with nearly perfect lattice match. We perform all-optical pump-probe measurements to investigate the ultrafast electron-phonon coupling at the buried interface of GaP/Si. Above-bandgap excitat
Li-based half-Heusler alloys have attracted much attention due to their potential applications in optoelectronics and because they carry the possibility of exhibiting large magnetic moments for spintronic applications. Due to their similarities to me
Hyperdoped metastable sulfur atoms endow crystalline silicon with a strong sub-bandgap light absorption. In order to explore such metastable states, we develop a new high-throughput first-principles calculation method to search for all of the energet
We propose a two-dimensional phase-field-crystal model for the (2$times$1)-(1$times$1) phase transitions of Si(001) and Ge(001) surfaces. The dimerization in the 2$times$1 phase is described with a phase-field-crystal variable which is determined by
We show by first-principles calculations that the electronic properties of zigzag graphene nanoribbons (Z-GNRs) adsorbed on Si(001) substrate strongly depend on ribbon width and adsorption orientation. Only narrow Z-GNRs with even rows of zigzag chai